- R

4, 8

. “ DISTAIRUTION. STXTEMENT K

‘) At Approvad for pusie reiecsed
T e, Distneusnon Unlumsted
. DEPARTMENT OF THE AIR FORCE
N & ‘" . AIR UNIVERSITY
- AIR FORCE INSTITUTE OF TECHNOLOGY
o) | -

Wright-Patterson Air Force Base, Ohio

AFIT/GCE/ENG/91M-01

TRANSFERING 4GL APPLCATIONS
FROM INGRES TO ORACLE

THESIS

Adnan Altunisik
First Lieutenant, Turkish Air Force

AFIT/GCE/ENG/91M-01

Approved for public release; distribution unlimited

o - 91-05750
177 I 91 ~

£ U re et OF G FOormaticn iy estunated ty Averae Y hour per resporae, inctudireg the time 1o POV ARG INSIIUE Y0, Q@A NING @ XTI RS 4700 2%,
; (ats necdadd sed completing and raviewing th oo tisctian of inforr. s Hen Gerd COmemants ,f“?'n'dm FIRIS DUIIER e MAte 0r Ay sihep gogaret 1 thn

P pamiie pmepreting toirifeen ty
roof LA P

| REPORT DOCUMENTATION PAGE oot o, 00 0183

el KU S TR PN for reduyin 3 iy hurden, GNP tan 108 Taaar e et i, DHectarate Lo 120 amnation Ciperetifung and Woperits, 1214 jiingene

. fr g Soataree g g
AN Ty, s IR Ae AR, VA 30114300 and 10 tha Ot e ot (A anammant and sodeee Paperanek Pedurtion Feagent i3 168-0 185}, dernglon, U 6593

1. AGENCY USE ONLY (Leave hlank) | 2. REPORT DATE 3. REPORT YYPE AND DATES COVERED
March 1991 Master’s Thesis
4. TITLE AND SUBTITLE , 5. FUNDING NUMBERS

Transfer of 4GL Application from INGRES to ORACLE

6. AUTHOR(S) ;
Adnan Altunisik, 1 Lt Turkish AF

7. PERVORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATIGN

Air F Institute of Technol WPAFB OH REPORT NUMBER
ir Force Institute of Technology, A 45433-6583 AFIT/GCE/ENG/91M-01

i e

TSPONSOIIG F MONITORING AGENCY NAME(S) AND ADDRESGIES) 10. SPONSORING / MONITORING
‘ AGENCY REPORT NUMBER
Col Thomas Yax

AU/CADRE/WG .
Maxwell AFB, AL 36112 -

11, CUPPLEMER TANY HOTES

S VR TITION F BV AN AR TY STATEMENT ¥ 12b. DISTRIBLTION CODE
Approved for Public Release; Distribution Unlimited.

cwyrmr

{

b
" -
CVE OHSTHECT (RS s iraam 200 wsrds)

i

FESE LS

ﬁ”“\ Abstract '

") This paper documents the transfer of 4GL applications from INGRES to ORACLE. As a result of a fast

and conceptual change in computer languages, 4GLs were developed and evolved. These are programming

support tools whose goal is, basically, to make the programs more efficient by reducing the number of in-

structions. Both ORACLE and INGRES database systems use 4GLs to develop applications. Their 4GL

environments and their facilities for application development are investigated and explained in depth in this

effort. The TWX application, which was originally implemented in INGRES by using its 4GL, is designed

and reimplemented in ORACLE. This is accomplished in ORACLE SQL*Forms. Totally eight forms are built

to accommodate the new application. The data, itself, was easily transferred to ORACLE apriori. The TWX
application now runs on a Sun386i stand-alone computer interactively. <

i B e A L KL, Tt

e

D B e e

|

1

N S ——

TR s PR S j

R SRR AR T L U B N OV Y

4GL, INGRES RDBMS, ORACLE RDBS, SQL*Forms, TWX Application ... 86 —

i T MHICE F O

§
"'E'w SEUTHTIY CLAGUHY avied | CRNTATION OF AN THACT
! CUoenSTRACT §
2

UNCLASSIFIED : UL !
AT ' ' “ B e iy

I R A RN IO A2 TE ot L T VRREN VS 110 AURN S IR N TR

!
'
1
4
i
!
] :
i Far PESIL B g g !

i
Cory

UNCLASSIFIED , UNCLASSIFIED

e TR L S A P AN VB R MRS

e

"o s

-

ENERAL INSTRUCT!

NS FOR
The Report Documentation Page (RDP) is used in announcing and cataloging reports.

MPLETING SF 2

It is important

that this information be consistent with the rest of the report, particularly the cover and title page.

Instructions for filling in each block of the form follow.

It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave Blank)

Block 2. Beport Date. Full publication date
including da', month, and year, if available (e.g.
1 Jan 88). Must cite at least the year.

Block 3. T fR n ver
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title_and Subtitle, A title is taken from

the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On
classified documents enter the title
classification in parentheses.

Block 5. Eynding Numbers, To include contract

and grant numbers; may include program

element number(s), project number(sb task
). Use the

number(s?, and work unit number(s

following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow

the name(s).

Block 7.
Address(es),

Block 8. Performing Qrganization Report
Numpber, Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

ﬁlock 9. Sponsoring/Monitoring Agency.
Names(s) and Address(es).

s). Self-explanatory.

Self-explanatory.

Block 10. i
Report Number. (If known)

Block 11. Supplementary Notes, Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ..., To
be published in When a report is revised,
include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distributi ilabli men
Denote public availability or limitation. Cite
any availability to the public. Enter additional
limitations or special markings in all capitals
(e.g. NOFORN, REL, ITAR)

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."”

DOE - See authorities

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports

NASA - NASA - Leave blank

NTIS - NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms, Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total

number of pages.

Block 16. Price Code, Enter appropriate price
code (NTIS only).

Blocks 17. - 19. i ificati
Self-explanatory. Enter U.S. Security
Classification in accordance with U.S. Security
Regulations (i.e., UNCLASSIFIED). If form
contains classified information, stamp
classification on the top and bottom of the page.

Block 20. Limitation of Abstract, This block

must be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR
(same as report). An entry in this block is
necessary if the abstract is to be limited. If
blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

A™IT/GCE/ENG/91M-01

TRANSFERING 4GL APPLCATIONS
FROM INGRES TO ORACLE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Adnan Altunisik, B.S.

First Lieutenant, Turkish Air Force

March, 1991

Approved for public release; distribution unlimited

S

Acknowledgments

J would like to thank my advisor, Maj. Mark Roth, for the guidance and support
through the course of this thesis effort. I would aisv thank my committee members, Dr.
Thomas Hartrum and Dr Henry Potoczny. Their critiques and inputs turned on lots of

lights upon this effort,

I would like to thank all the {riends in the Oracle Contractor Area, especially David

Roliff, for their support and ‘patience’ on the design phase.

[would also thank all the AFIT personnel, faculty members, and my classmates.
They helped me to overcome the AFIT challenge and made these seven quarters an ex-

traordinary experience for me.

Last, but not the least, I would like to thank my family for supporting me through
these two hard years. My mother Gulten, my father Hikmet, and my brother Adil did
a hard-to-believe job by coming to AFIT all the way from Ankara, Turkey to show their

support.

Adnan Altunisik

ACTetinT Foe

NTVWS O Y
U i Pt ™1
U a, o o
IS TN TR

bt e o s e

By

Di.t iatio, | o

e it e mene
, oy e, T
At Y L el

/‘-\'an o -:: Ot

Dist I

RFAN

M

Table of Contents

Acknowledgments L e

Table of Contents . . v v v v v v i e e et e e e e e .

List of Figures

List of Tables

....................................

.....................................

Abstract e e e e e e e e e
L Introductiont e e e e
1.t Background of TWX e e e e
1.2 Problem e
1.3 Approach and Methodoloey
1.4 Sequence of Presentation
IL Fourth Generation Languages
2.1 Fourth Generation Languages in General
2.2 Databasesand4GLs
2.3 4AGL Facilitieso o L
2.4 4GlLs in Systems Development
2.5 Analyzing ligh-Performance 4GL/RDBMS Application Require-
Wents . oL e e e e e e e e e e
2.6 Selection CriteriaFor4GLs
227 dGLTYpes . o o o o o e e e e e

jii

Page

i

vi

vii

1-1

2-1
2-1
2-3
2-4

2-6

2-7

2-13

Page

III. ORACLE’s & INGRES’s4GLs e e 3-1
3.1 ORACLE’s4GL C e e e e e e 3-1

32 INGRES S4GL 3-13

3.2.1 Fourth Generation Environment (4GE) 3-13

3.2.2 Applications-By-Forms (ABF) 3-16

3.2.3 Query-By-Forms (QBF) 3-19

3.24 Visual-Forms-Editor 3-20

3.2.5 Report-Writer e e e e 3-21

3.2.6 DProgramming Tools in INGRES 3-23

3.3 The Comparison . . o . v v v v vt ot it e 3-24

IV. Building The Application In ORACLE 4-1
4.1 Approach e e e e e e e e .. 4-1

4.2 Designing The Application 4-6

4.2.1 Creatinga¥oim 4-7

4.2.2 CreatingBlocks 4-8

4.2.3 Saving, Running, and Testing the Form 4-12

4.24 ModifyingtheForm 4-13

4.2.5 Triggers e e e e e e 4-14

4.2.6 Validating Data With SQL Statement 4-18

V. Conclusions and Recommendations 5-1
h.l Overview o e e e e e 5-1

52 Summary of Research 5-1

5.3 Conclusions e e e e e e 5-2

5.4 Recommendations e e e 52
Bibliography o o o BIB-1
VHA . e e VITA-1

Figure

2.1.
2.2,
2.3.

2.4,

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.

4.2.

List of Figures

Progression to the 4GL (6:28)
4GL Facilities for Production Systems(6:65)

The Model of the Prototyping Cycle(6:65) .
4GL/RDBMS Performance

ORACLE Facilities(6:85)
Forms Representation in ORACLE
Form Formats And Components
OCI Development Process
INGRES Facilities(19)
INGRES Application Components(18:11) . .
Visual Forms Editor in INGRES
Reports-By-Forms in INGRES

The TWX Application in ORACLL

Forms Design in SQL*Forms

.3. Block Design in SQL*Forms e

. A Multi-Block Screen (Page)

...............

...............

..............

...............

...............

...............

...............

...............

...........

4. The APPORTIONMENT Block in the Design Phase.
. The APPORTIONMENT Block During Runtime e e

Page

2-10

3-2
3-5
3-7
3-12
3-14
3-15
3-21
3-22

4-10
4-11

4-17

L=t of Tables

Table

2.1. Summary of the Languages Spectrum(6:23)

2.2. Selection Criteria for 4GLs(6)

3.1. Canonical Data Types

3.2. Canonical Features of 4GLs(1) f e e e

vi

.................

Page

2-2
2-14

3-27

3-30

AFIT/GCE/ENG/91M-01

Abstract

This paper documents the transfer of 4GL applications from INGRES to ORACLE.
As a result of a fast and conceptual change in computer languages, 4GLs were developed
and evolved. These are programming support tools whose goal is, basically, to make
the programs more efficient by reducing the number of instructions. Both ORACLE and
INGRES database systems use 4GLs to develop applications. Their 4GL environments
and their facilities for application development are investigated and explained in depth in
this effort. The TWX application, which was originally implemented in INGR IS by using
its 4GL, is designed and reimplemented in ORACLE. This is accomplished in ORACLE
SQL*Forms. Totally eight forms are built to accommodate the new application. The data,
itself, was easily transferred to ORACLE apriori. The TWX application now runs cn a

Sun386: stand-alone computer interactively.

vii

TRANSFERING 4GL APPLCATIONS
FROM INGRES TO ORACLE

I. Introduction

A necessary revolution is taking place in computer languages. Today, the program-

mers need to be able to instruct computers more easily and more quickly.

Any set of estimates of future computing power indicates that the productivity of
application development must increase by at least two orders of magnitude over the next

ten years (1).

As computers spread, many people who are not data processing professionals must be
able to put computers to work. Application development without professional programmers

is becoming a vigorous trend in computing (8).

End users should also build their own computer applications. They need languages
that are easy to use and do not require the memorization of mnemonics, formats, sequences,

and complex constructs.

‘I'he new generation of computer languages, then, needs to be much more powerful
than the previous gencration so that results can be obtained much faster. These languages

are referred as fourth generation languages (4GLs).
The objectives of 4GLs (1) are to
e Greatly speed up the application-building process
o Make applications easy and quick to change, hence reducing maintenance costs
¢ Minimize debugging problems
¢ Generate bug-free code from high-level expressions of requirements

o Make languages easy to use so that end users can solve their own problems and put

computers to work

1-1

4GLs need far fewer lines of code than would be needed with languages like COBOL,
PL/1, and Ada to perform the same functions. They might be referred to as high-
productivity languages. 4GLs vary greatly in their power and capabilities. Some are
merely query languages; some are report gencrators or graphics packages; some can be
used to create complete applications; some are very high level programming languages;
some are highly restrictive in their range; others can handle a variety of applications as
well. ‘In the fourth generation, much more than in the third, the languages have to be

selected to fit the application’ (1).

in the scope of this thesis, 4GLs are reviewed in general. The focus in this review is

on two different 4GLs, namely, INGRES and ORACLE.

The rising trend of ORACLE has been waiting to be tested and proven to have one
of the best 4GLs in it. This development on the market had an effect on the Air Force as
to try ORACLE’s 4GL. An application first developed in INGRES, namely, the Theater
War Exercise (TWX), is transferred from INGRES to ORACLE in this thesis effort. '

1.1 Background of TWX

The Theater Warfare Exercise is a two sided, theater level, air power employment
decision making exercise conducted by the Air Force Waigaming Center. The decisions,
once made by the exercise participants, are fed into TWX's air and land battle siinulation
programs, which then simulate the employment of the air power. The players receive
the battle results, air/land orders of battle, logistics, status, weather forecasts, and other

information from the computer.

The requirement for an exercise such as UWX originated in 1976 when the current,
USAT Chief of Staff directed the development of ‘rigotous courses of study instructing
operator and planners in the theat and application of force’. To accomplish this task,

TWX was developed in Air War College between 1976 and 1977.

The TWX databases and algorithms were intentionally drawn from unclassified
sources and are, therefore, only 1epresentative of real world force postures and capabil-

itics. The bottom line is TWY provides the educational opportunity to emnloy aiipower

strategies and doctrine and the principle of war in a simulated, but hopefully realistic,

situation.

From 1977 to 1987, the TWX was run on a Honeywell 6000 series mainframe com-
puter. The interaction between the game controller and the user was very limited. In
1987, two Air Force Institute of Technology (AFII) students, Michael Brooks (2) and
Mark Kross (7), rehosted the exercise from Honeywell to a DEC Micro Vax 3600 series

computer using Zenith Z-158 microcomputers as remote terminals.

Michael Brooks and, later, Ken Wilcox (20) rewrote the game controller to allow
multiple seminars of the game to be controlled concurrently and redesigned the database
from application-specific files to a commercially available INGRES relational database

management system.

{ross developed a new input interface on the Z-158’s using a fourth generation lan-
guage provided by INGRLES. The new interface allowed immediate validation, feedback,

and forecast on the map.

In 198<, another AFIT student, Darrell Quick (16), developed a map-hased graphical
display to replace old computer printouts. Again, in 1989, Peter J. Gordon went into
more detail in the development of the graphical player interface. In his effort, the TWX
graphic output display interface and the form-based input interface were combined into

one interactive interface (5).

The TWX is currently running on a DEC Micro Vax 3600 series computer. The data
manipulation for the game is accomplished through INGRES RDBMS. The user interface

is written in INGRES fourth generation langunage (4GL).

1.2 Problem

Another database, ORACLE, has a rising trend on the database market in the last
decade. Tt has new features, two of which are its procedural structured query language

(PL/SQL) and fourth generation language.

The sponsor has 1equested that the ORACLE RDBMS be substituted for the IN-

GRES RDBMS in this application. The 1elational data, it elf, is casily transferred. How-

ever, the 4GL applications built with INGRES need to be reimplemented in ORACLE’s
forms-based system. This cffort will determine a baseline for 4GL comparison in general

and be an opportunity to compare and contrast the ORACLE and INGRES 4Gls.

The possible benefits from this thesis effort include:

o Development of a canonical set of 4GL functions which can be used to compare other

systems

¢ Development of automated methods to transfer INGRES 4GL to ORACLE 4GL.

1.8 Approach and Methaodology

The implementation of the TWX in a new environment, ORACLE RDBMS, has
never been realized before. This new initiative is accomplished in a systematic approach.

The approach taken to reach the solution space is as follows:

1. The two database systems are compared and contrasted by their 4GLs, preceded by

a detailed 4GL discussion.
2. The application that was implemented in INGRES RDBMS is reviewed.

3. The application that will be built in ORACLE is planned and designed.

1.4 Sequcnce of Presentation

Chapter 1@ is a review of fourth generation languages (4GL) in general. The
database-1GL connection. 4GL environment facilities, and an analysis for high-performance
4GL/RDBMS application requitements aie some sections which are included in this chap-
ter. Chapter I is where the ORACLE and INGRES 4GL environments are reviewed
in detail. In order to create an application, the tools that are going to be used in these
applications and how they work are explained in thi> chapter. In Chapter IV, the discus-
sion is about the implementation of TWX in the ORACLE RDBMS. However, instead of
explaining the implementation details, in this chapter, the focus is rather on creating an

application in ORACLE SQL*Fonus, using examples chosen from the TWX application.

Finally Chapter V is the section which concludes the thesis. Here, the work is summarized

and criticized by considering the objectives set forth in this chapter.

II. Fourth Generation Languages

2.1 Fourth Generation Languages in General

There is a fast and conceptual change in computer languages. Today, more than
ever, computers need to be programmed more practically and quickly. There are, mainly,

two reasons for this:

1. Increasing computer power

2. Application development by end users

The first reason is directly related to an issue called software versus hardware costs.
Hardware used to be expensive but not so complex. Now, it’s considerably less expensive,

however, more complex. As with the scftware trend, it continues to be labor-intensive.

The second reason refers to new computer users. Nowadays, not only professional
programmers, but also end users are becoming increasingly involved in application devel-

opment.

There has evolved a wide language spectrum, starting from the first generation lan-
guages. Table 2.1 summarizes orientations, uses, and product « xamples for each language

level in this spectrum.

In addition to languages, new development tools evolved to meet the software pro-
ductivity requirements. These tools aie in the category cultomaled software development
tools, which also include programming support tools, design technique tools, and project
management tools. Among these, programming support tools automate the process of

writing applications.

Fourth Generation Languages are programming support tools whose goal is, basically,
to make programs more efficient by reducing the number of instructions. To accomplish
this, 4GLs can (6:14-15):

o llelp with application definition.

2-1

Table 2.1. Summary of the Languages Spectrum(6:23)

| Generation Level | Orientation | Uses | Examples
First & Second | Machine Hardware dependent | e For frequent highly proprietary
(Pre-1950s Assembler (problem — efficient use, for machine
& 1960s) algorithm — example, compilers and
(Minimal over- machine opera- assembly
head) tions — coding) language
Third (1960s Algorithm Hardware ¢ Numeric calculations | ALGOL
& 1970s) independent ¢ Business use COBOL
(Medium cver- {problem — ¢ General-Purpose PL/1
head) algorithm — code) applications PASCAL
¢ Special-purpose FORTRAN
applications BASIC
Fourth (1980s) | Between Mostly hardware ¢ End-user computing NOMAD
algorithm independent ¢ Decision support EXPRESS
and problem (problem — systems IFPS
(High overhead) | high level o Information center IMAGINE
algorithm — code) language
¢ Rapid system
development.
Fifth (1980s & | Object Hardware dependent | ¢ Comimnercial LISP
1990s) (LISP machine), but | artificial intelligence PROLOG
(Medium over- mostly hardware systems GEMSTONE

head)

independent
(Object — code)

¢ Expert systems

¢ Object-oriented data-
base management
systems

¢ Permit defirition of data in terms meaningful to the user.

o Permit the entry, modification, and deletion of data either interactively or
from existing files on traditional storage media.

¢ Provide simple ways to spacify the reports that are to be derived from the
stored data with flexible formats, useful summaries, and ways to make
only subsets of data available to users not authorized to see all of it.

4GLs arc heneficial for the development of systems whose program flow will change
frequently. This change can be in calculation, in 1eport, or in program logic. Substantially,
they reduce the complexity of development cycles and database inquiry systems making
software developers more productive.

systemm models with end users to verify such items as format and functionality of the

system functions and jnput/output formats.

One of the functions of 4GLs, which is important in this context, is to generate
applications. With 4GL. the application creator can specify how files or databases will be

updated, what calculations and logic are performed, and what output is achieved. Machine

2-2

Thus, they allow software developers to review

performance is often a concern with routine data processing. Applicatiun gererators need
compilers that create optimized code modules and organize the data access as efliciently

as possible (6:20).

2.2 Databases and {GLs

In Figure 2.1, the evolution of database systems is shown in terms of the computer

languages.

Database

4GL

Figure 2.1. Progression to the 4GL (6:28)

The first commercial Database Management Systems (DBMS) were somewhat con-
nected to languages like FORTRAN and COBOL. They were dependent upon these lan-
guages for retrieving records or manipulating the database files. In the next development
cycle of DBMSs, query languages were used. These were more user friendly in the context
that the users were able to retrieve data and manipulate files in the database by using
more understandable constructs. These query languages were closer to natural-English.
Soon, there were many of these languages on the market. In response to the need for
an automated environment of query language commands, 1GLs were created. 4GLs were

introduced to the arena of DBMS in two steps First, they were just an extra package

for the query-based languages. Later on, complete applications were built within one

programming environment using 4GLs.

When building a query-based application, it may be difficult for the system architec-

ture to anticipate all of the functionality and flexibility that will be required.

The best environment for a query-based application is where the 4GL is tightly
integrated with the DBMS. In this case, queries interact with the database more quickly,
directly, and completely. While the application evolves, the user can work with any kind
of data that is related to the application. Tight integration means that the users don’t
have to learn about the new tools, because the 4GL provides all the capabilities. The 4GL
is not only a complete programming environment for the new users, but alsc it provides a

wide variety of programming capabilities for professional users (3).

In high-performance systems, where applications are more sophisticated and more
complex, tight integration is an important asset. Small performance gains give the user a

great deal of extra productivity.

2.3 JGL Facilities

No matter what the complexity of a 4GL product, the main idea is to accelerate
the development of computer application systems by speeding up and simplifying the
programming process. Moreover, the maintenance is expected to be easier than that of a

standard coded program.

An ideal 4GL environment has its own tools such as: database creation tools, dat:.
input tools, application generator tools, and decision support tools. Figure 2.2 illustrates

a complete 4GL environment.

The 4GL environment tools are centralized around the DBMS. Each supporting tool

has its own internal tools. These are:

¢ Database Creation ‘I'ools

- An on-line data dictionary/directory to support data element/field description,

record and file/database definitions, and maintenance capabilities.

2-4

. » Application

Database Generator Tools

Checkout Tools

o 40 o0 on on 40 D G5 G5 S W B T S 2D o &

¢ Data Dictionary ¢ Query Language

o Data Analysis ¢ Report Generator

¢ Data Modeling ¢ Two-Dimensjonal

¢ Database Menu Interfaces
Design Database ¢ Procedural Langnage

¢ Interface to 3GLs

Data input
Tools ¢ Statistical Analysis

¢ Simulation Modeling
& Data Security

¢ Financial Modeling
e Data Inputs

¢ Spreadsheet Packages
¢ Audit Counting ¢ Artificial Intelligence

eOnlineHelp (e mmm-mo--—s—=e e

Deccision Support

Systems Tools

Figure 2.2. 4GL Facilities for Production Systems(6:65)

- Data analysis tools to monitor performance and to enbance and analyze user

views of data.

— Dala modeling and database design tools to speed up system building.

e Data Input Tools

~ Screen design and painting facilities, the most important data input tools. The

screen painter should create color blocks, reverse video, highlighting, and fields

for user data-entry.

~ Data security and integrity controls which should be invoked automatically.

— Awdil controls which should be easy to use and automatic. Audit contiols allow

one to store formation on who read, created, updated, or deleted data items.

[\
)
fae §

—~ On-line Help, which the user should be able to invoke.
¢ Application Generator Tools

~ A query language, which is required either for simple queries that display a single
record or for complex queries that display data that were projected, joined, or

searched, with various conditions applying,.

— A report generator facility, which provides the user with simplified means of
generating and formatting reports. The default values provided allow standard
reports to be produced with a minimum of specifications. Custom reports can
also be designed with the use of procedures. Often the report generator can
perform simple arithmetic functions such as averaging, calculating percentages,

and finding maxima and minima.

- A graphics generator, which can adjust the formats, color, shading, scale, and

labeling of the graphs and help create well-defined graphical outputs.

- A two-dimcensional menu interface facility for a dialogue with the user.

2.4 4GLs in Systems Development

In the development of information systems, I preferred to trace Gregory and Wo-
jtkowski’s methodology (6:131-147). They handled this concept in a very understandable

style in their new book (6):

The development of information systems is a complex issue. To deal with this
complexity problem, a disciplined approach, the classical system development
life cycle, is chosen.

The development of information systems follows a lincar process, namely, the system
development life eycle (SDLC). There are some applications that are highly structured.
These have to follow a linear development life cycle which coresponds to prespeeified
computing. For these hinds of applications, the requirements have to he shaped well ahead

ol time. On the other hand. this approach has two weakunesses:

2-6

e It takes a long time (months, even years) to develop the system

o If the user expectations are not met, starting all over might be necessary, which costs

a lot,

To handle these problems, the prototyping approach can be used in which 4GLs play

a major role as development tools.

In its own environment, the prototyping cycle should have a development tool (4GL)
to quickly build the prototypes using the data resources available. Also, an energetic user
who is ready to tackle the system problems and a prototype builder are needed. Like every
system development cycle, prototyping also has steps. In Figure 2.3, these cycles can be

scen as separate steps.

o In Step 1, the main objective is to gather enough information to initialize the pro-
totype. The user and the designer should discuss the process to provide a solid
understanding. Then, the system is defined with a set of data elements in their local

relationship-. At the end, a cost analysis should be done.

o In Step 2, an interactive prototype of the application system is built. This prototype

should meet the requirements set up in Step 1.

o The purpose of Step 3 is to refine the initial requirements by using the working
prototype. This follows the question ‘Is the user satisfied?” If the answer to this

question is ‘yes,’ then the working nrototype is improved for a final product.

o If the answer to the carlier question is ‘no,” then Step 4 is realized. The working
prototype is refined, revised, enhanced, and Step 3 is repeated. This is where the

available fourth-generation technology is used to advantage.

2.5 Analyzing Iligh-Performance JGL/RDBAMS Application Requirements

‘ligh-performance’ applications differ from the others in some natures. They are
larger in size, complexity or scope. In otder to make a healthy choice about the 4GL/RDBMS,

a 1obust analysis is nocessary (3).

¢ Proposal Definition

¢ Feasibility Assessment
¢ Scope of System

¢ Estimated Costs

STEP 1

STEP 2 Develop the
Initial Prototype

/lniliai Prototype /

STEP 3 Use Prototype ?ystem
to Refine Requircments

Operational Enhanced
Prototype Prototype

/Working Protot_vp/

Revise and Enhance
the Prototype

STEP 4

Figure 2.3. The Model of the Prototyping Cycle(6:65)

'The analysis should, first, take the user/developer needs into consideration. Second,
to make full use of the software throughout the lifecycle of the application development,

software product evaluation is important for the selection of this software.

The TWX application is deemed to be a high-performance one. Today, most appli-
cations use both 4GL and an RDBMS. The 4GL and RDBMS, together, can be used to

create different applications in different complexities.

The expectations from a spedific 4GL for a high-performance application are (3):

2-8

| o Developer case-of-use: From the developer point of view, the 4GL should be easy to

develop applications.

o End user ease-of-use: From the user point of view, the system created via the 4GL

should be easy to use, consistent in the flow of operation.

e Quick in querying: The querics should be performed quickly by meeting needs for a

comprehensive query traffic (the queries could be complicated).

o Comprehensive query needs: It should be capable of manipulating a loaded, complex

database.

o Flexibility to quickly tailor operations: To be able to aiter the operations for the

specific needs of the application,

e Permits data manipulation: Like deleting, altering, inserting or updating the current

values in the database.

o Requires tight integration of 4GL and RDBMS.

A needs analysis is necessary to make a good decision about the 4GL and the

RDBMS. There are some points that shonld be considered. These are:

o 4GL/RDBMS Ratio

From the items above, the last one is somewhat dependent on the prevailing circum-
stances. When a 4GL and a RDBMS are combined to be used together, the question

of the ratio comes up: How much RDBMS, how much iGL?

4Gl is used for its powerful commands to manipulate the data. On the other side,
RDBMS is used for storage and retiieval capabilitics. When the application is ex-
pected to include the new operations or the sophisticated data in the future, then,
for the flexibility of the application, the 4GL must provide a wide range of reporting

options (3).

The 4GI must also provide an extensive set of commands and a development tool

for the developer. These two are also necessary for the maintainers.

Another issue about the discussion of ‘how much 4GL und how much RDBMS’ is
the expected capabilities of RDBMS. Data sccurity, access by multiple users for
multiple purposes, and integration with other software and interfaces all combine on

the relative capabilities of the RDBMS (3).
e On-line Transaction Processing vs Queries

On-line transaction processing (OLTP) and query based systems are two main classes
in today’s 4GL/RDBMS applications (Figure 2.4). Essentially, most of the applica-

tions make use of the two classes.

Product

Performance

Transaction Hybrid Query

Environment Environment Environment

Application Type

-0—6—6-—6- ligh performance transaction based system
——————————— Hybiid system

High-Performance query based system

Figure 2.4. 4GL/RDBMS Performmance

2-10

These two systems are, in effect, different in both desigi. »nd operation. In OLTP’s,
also known as the transaction-based systems, the main functionality is that a small
amount of data is updated very often. On the other side, query-based systems are
optimized for dynamically selecting data that satisfies the user’s requests and his

complex query conditions.

A needs analysis has to be done before the purchase of the product. At the end
of this analysis, the application will be classified whether it is a query-based or a
transaction-based. This analysis, in turn, becomes the most important criterion for
making a decision on the product evaluation. The TWX, the application which is
in question for this thesis, is a hybrid one between these two classes. To make the

distinction, one must look at the details of these two systems.
Transaction-Based Application Characteristics:

Transaction-based, or OLTP, systems are commonly used in high-volume disk read/write
appiications such as automatic bank teller machines and airline reservations. These

systems require instantaneously updated information, in tasks such as:

Updating huge databases quickly and accurately.

Handling a lot of reads and writes which are not really complicated.

Executing fixed commands that are not under the direction and control of the

cud user.

The functionality, itemized above, is easily accomplished by this kind of system.
However, when the queries starts getting complicated, it takes quite some time to

execute these in transaction-based systeni.
Query-Based Application Characteristics:

Since there systems are mainly involved in sophisticated querying, they are often used
in the scientific arca. Huge amounts of data must be 1etneved, studied and manip-
ulated. Flexibility and the speed of operations are the two important requirements.

High performance query-based systems must:

Navigate through the massive amount of data and provide complex operations

to gather the data not just from one source but from many.
— Provide flexibility for applications future enhancements.

— Have a nice interface for the user, so that he learns the fundamentals of the

system easily.
~ Provide access to needed development tools including debugging.

— Integration of the system with the other environments such as PC or linker so
well that the 4GL/RDBMS is the center of the entire system. This is specially

desired in multi-user environments.

Performance Demands: By definition, high-performance 4GL/RDBMS applica-
tions demand extra performance from the CPU, from storage and software function-
ality. A complete analysis should be assessed about the high-performance software
application. The following criteria are listed in a clean-cut way in order to clarify

the application needs (6):

— Size of database: The number of records per dataset and the number of datasets

per database.
~ Data Dimensions: The number of characters to occupy a single field.
— Data Types: The data types that are allowed.
— Expected Retrieval Requirements: Like speed.

— Query Requirements: If queries are lengthy and complex, if they reference pre-

vious commands, if queries are executed by programmers or end users...

— Reporting: If simple/complex reports can be generated through from a screen-
based environment without any additional commands, if these reports can be

programmed and compiled into applications...

— Integration: If the users are familiar with the operating system, if the commands
are not too different from the conventional ones, if integration with modules is

required for processing, analysis or reporting,.

2-12

— Application Growth: If needs change in the future, if the database can grow
without affecting applications, if applications can grow regardless of rebuilding

the database.

2.6 Selection Criteria For JGLs

INGRES and ORACLE RDBMSs are joined with 4GLs to produce powerful appli-

cations. Choosing the right 4GL is important to achieve the maximum productivity.

The Fourth Generation Languages differ in options, efficiency, reliability, and cost.
A well-planned, carefully executed selection improves the chances of finding the rizht soft-

ware. In their book (6), Gregory and Wajtkowski explain the evaluation phase:

Evaluation: The primary objective of the evaluation is to identify the ‘critical’
factors which make the distinction between an appropriate and an inappropriate language.

These factors are listed in Table 2.2.

2-13

Table 2.2. Selection Criteria for 4GLs(6)

USER NEEDS

User friendliness

Menus and prompts
Integration across modules
Default Report Formats
Help facility

Clear error messages

Full screen data entry
and editing

Novice and expert mode
(procedural and non-
procedural mode)
Supports prototyping
Clear and Helpful
Documentation

Imtial license, installation
and annual costs

Vendor Support

User training
Applications consulting
Hotline and technical support
Product updates

User groups

Number of instaliations
Time-sharing access
Efficiency and reliability
Data

Support cost

Pricing Stiucture

APPLICATION NEEDS

...

Mainframe, mini, macro
compatibility

Operating system compatibility
Resource use: CPU, Memory,
storage

Communication Linkage
Other databases
Special-purpose software
Other computers

Costs and resonrce usage

Language
Procedural/nonprocedural
Compiled/interpreted

Customized menus, prompts,
forms, warnings, erors

messages and reports

Standard symbols and conventions
Common and user defined
functions

Data Management
Data dictionary
Conumon DBMS
Data types
Simultancous access
Data sccurity

The critical factors are actually extracted from the following set ol groups:

User Needs: User needs should be met depending on the user’s level of knowledge
about the system. For a novice user, this is most critical. On-line help and built-in tutorial
help the novire users find their way. If the user is an experienced one, 4GJ, must offer tools

and have the power of a procedural language.

A 4GL should support prototyping as stated earlier in this chapter. This will en-
able the user to interact closely with the system during the design and testing stages of
the application development cycle. A 4GL should produce documentation for the appli-
cation, including specifications, documenting history of changes, and different versions of

the application reports.

Application Needs: The language should not only satisfy the user's neceds, but

also satisfy the application needs:

e The language should have compatible code.

o The language should include some processing facilitics depending on the intended
application. These processing facilitics can be programiming loops, array processing,

computational functions, type of databases and files...

Efficiency: The language’s efficiency will be different from one operating system to
another operating system. For this reason, the language’s efficiency characteristics must

apply to the appropriate operating system.

The language’s efficiency, the number of users, the size and nature of the applications,

and the desired response time determine the need for the resources.

Hardware requirements: The 4GL should be flexible enough to work under var-
ious hardware and/or software environments. The language should meet the needs of the
environment, instead of forcing the environment to adjust to suit the language. Since there
are tany PC users, the language should altow the PC user (o query and extract mainframe
data, download the data to the PC. and manipulate the data locally with the standard PC
tools or with a PC version of the mainframe language. Or he should be able to design the

application and later upload it to the mainframe

2-15

2.7 4GL Types \

Mainly, there are two'types of 4GLs on the market:
|
1. Application Programmer 4GL:

This type of software'is used by the data processing departments of many business
organizations. It is used to develop transaction processing systems or large databases

in the mainframe environment; that is, it is used for company-wide systems.

Most of the time, the installation and the use of tools associated with products in
this category require a highly technical staff. Usually this software is very procedural
and too complex for most end-user computing. Its use nceds some extensive training.
ORACLE is an example of this class. Some of the ORACLE products can he used

by application programmers as well as by highly trained user-developers.
2. General-Purpose 4GLs:

There are two categories of products in this group: those that comprise both DBMS

and a 4GL and those that do not have a proprietary DBMS.

DBMS/4GLs are often called the development/information center 4GLs. Some are
used by professional programmers only; others can be used for departmental com-

puting by the end users as well. INGRES is an example of this class.

ORACLE and INGRES systems are explained in detail in the next chapter.

2-16

[Il. ORACLE’s & INGRES’s 4GLs

3.1 ORACLE’s 4GL

ORACLE is a distributed relational database system created by ORACLE Corpora-
tion of Belmont, California. Versions of ORACLE exist for micro, mini, and mainframe
systems. ORACLE’s first commercial release was in 1977 and as of this writing, the product

is at version 6.0 (19).

The type of 4GL that is being used by ORACLE is for application programmers.

This is mainly used to develop transaction processing systems or large datavases.

ORACLE evolved into a 4GL product that can run on a variety of mainframes, minis,
and personal computers. It supports a large number of operating systems such as MS-DOS,

UNIX, VM/SP, and VMS. The ORACLE system structure is shown in Figure 3.1.

Fourth Generation Environment (4GE): SQL and the relational database model help
the application designer to create their work. But, SQL doesn’t satisfy the application
developient requirements. It doesn’t have the capability of formatting conditional proce-
dures, and advanced data validation routines/functions which inus! e supplied by appli-
cation tools put on top of SQL. On the other side, SQL provides the transition phase to a

Fourth Generation Environment (4GE)(4:6-7,289).

Figure 3.1 also includes the complete 4GE tools in ORACLE. The major tools in this

environment are explained below.
Application Development:

As David Pepin defined application in his book(15:353):

An application is a set of functions working together to perform a specific task;
described physically, it is a collection of programs, tools, and ntilities that
interact to perform a specific task.

In ORACLE, a large collection of tools and products allow application developers to
create alinost any type of application. One of three methods are used depending on the

tools available and the type of functions which are needed by the application:

3-1

SQL/DS

e SQL*Plus

Database

. SQL

Multiuser
Support

Security and
Auditing

N\
ORACLE
Application
. Tools
End-Users ¢ SQL*Forms
| _Tools e SQL*Plus
Easy*SQL » SQL*Report
SQL*Graph || « SQL*Menu
SQL*Calc s SQL*Design

Distributed
Data Processing
e SQL*Net
¢ SQL*Connect
° SQL*Star
] SQL*Link

Programmatic

¢ Precompilers
e Subroutines
¢ Call Interfaces

Figure 3.1. ORACLE Facilities(6:85)

o A high level language

o SQL*Forms

Most of the applications exploit these three methods at the same time. But, several
factors allow cach of these products to be the basis for an entire application: each can
create a shell that calls external modules of similar and dissimilar code from within the

shell; each can interact directly with the user; and each can interact directly with the

ORACLE database(15).

An entire appiication done completely in SQLYPlus is rare but may be necessary

when SQL*Forms or a high-level language ORACLL interface is not available. However,

3-2

SQL*Plus-based utilities are used in parts of many applications.

On the other side, there is a great advantage in developing an application based on
SQL*Forms. Because, it can be iransferred to a variety of mainframes, minicomputers,
and microcompur.rs with no changes. Also, an entire application package can be created

using SQL*Forms.

A cost-saving advantage of SQL*Forms is that a prototype can be created rapidly. In
the time it takes to create a single form using a 3GL, the prototype of an entire application
can be created. The prototype can also be used as part of the final product with some
additional triggers (a trigger is a set of commands that are executed at, or triggered by, a

certain event when a form is run)(15:378-405).

3.1.0.1 SQL*Forms SQL*Forns lets the application developer to build forms-
based applications guickly for entering, querying, updating, and deleting data. Using
simple menus and using the powerful screen painter, the application needs are specified.
SQL*Forms then combines the instructions with information from ORACLE’s data dictio-

nary to generate the application.

SQL*Forms gives the ability to:

e insert data into the database by typing the data directly into the fields
e view, update, or delete several records on the screen at one time

o type query conditions directly into the fields to be queried.

For example, the following SQL Language statements will insert a set of data into

the database:

INSERT INTO ORD

VALUES (610,’07-JAN-87’,’A°101,°08-JAN-87’,101.4)
INSERT INTO ITEM

VALUES (610,1,100860,35,1,33)

SQL*Forms can display the data that is not in any database but is calculated on the
basis of data stored in the database. One can generate data that records such things as

the time, date, or operator associated with each change to the database.
Understanding the Basic of the Forms:

Below arc the basic definitions that are needed to know to work successfully with

SQL*Torms.

Page: The part of the form that is seen on the screen. A form can have many pages.
o Block: Data and text that correspond to one table in a database.

¢ Base Table: The table on which a block is based.

e Record: Data from one row in a table.

o Field: A highlighted or underlined area on the screen that can display a value. The

value usually corresponds to a value from a column in a database table.
e Single-Record Block: A block that can display only one record.
o Multi-Record Block: A block that can display more than one record.

e Value: An item of information in a field.

The forms in Figuie 3.2 <hows three blocks on the same page. Block, fields, and
o g ?)

records are shown on the margin separately.

The steps which should be followed to accomplish the goals in building the application

can be outlined as follows:

Clarify the goals that are going to be achieved.
¢ Determine which tables will be used in the form.
o Determine the blocks a particular form will contain.

o Determine the order in which the blocks are going to be laid out in a particular form.

The order of the blocks can be sequienced for the ease of the operator first. Then. it

can be changed.

DAY

o

0_ 2ATAF DEFENSIVE_SUPPRESSION_MISSION_INPUT____

Blo ¢ k CYCLE: DAY _
SIDE : BLUE

o +
MISSION LINE # :|1501_|
=t
Fie Id I
MISSION AIRCRAFT AVAILABLE AIRCRAFT
TYPE ROLE SORTIES TYPE ROLE SORTIES
— - 111_
— - AVE 3
I — F16__
TOR 352
Recordis —— - —

g
o
’I 'I Il}fnyﬁﬁy

Figure 3.2. Forms Representation in ORACLI

3-5

e Use the Default Block capability to build a rough draft of the form.

o Modify and re-size the default ficlds and create new ones until all the fields that are

needed are created.

e Enhance the form visually by adding text and highlighting certain parts of the form

with boxes and lines.
o Add validation checks and supply default values and other fields criteria.

o Define triggers. A trigger is a set of commands that is executed at or ‘triggered’ by

a certain event when a form is run.

o Test the form often-SQL*lorms is designed to permit convenient testing of a form

in design phase. Diagnosing errors as soon as possible maxes the form design casier.
3.1.0.2 SQL*Forms Componcnls The components of SQL*Forms include:

¢ SQL*Forms (also called IAD), the Interactive Application Designer, which creates
or modifies the form in the database. It is the main component which can call the
others. It is also executed when CREATE or MODIFY is chosen from CHOOSE
FROM window.

o SQL*Forms (Convert)(also called IAC), the interactive application converter, which
converts a form between database and INP format. It is executed when GENERATE

or LOAD is chosen from the CHOOSE FRCM window.

o SQL*Forms (Generate)(also called IAG). the interactive application generator, reads
an INP file and generates a FRM file and runs it. It is executed when RUN is chosen

from the CHOOSE FROM window.

As illustrated in Pigure 3.3, the designer can use components of SQL*¥Forms to

convert [rom one format to another.

3.1.0.3 Triggers A triggeris a set of SQL*Forms commands peculiar to OR-
ACLE that are executed at. or triggered by, a certain event when a form is run. They can
&g A A

he used to validate, assist, and enhance what the operator enters on the form.

IAC

IAG

SQL*Form

RUNFORM
Figure 3.3. Form Formats And Components

Triggers hold the key to much of SQL*Forms’ power and also much of its complexity.
Although writing the triggers is not like conventional programming, it can be very complex.

Trigger events can be associated with five kinds of events:

e cntry- when the operator first runs a form or when the cursor enters a new block.

record, or field
o query-before or after records are retrieved

o changc-after the operator changes a value, or before or after inserted, updated, or

deleted records are committed to the database

o ezil~-when the operator leaves a form or when the cursor leaves a block, record,or

field

o keystrokes—when the operator presses a funct’on key.

There is an other kind of trigger that is not triggered by a specific event at all. These

are user-named triggers-common triggers or subtriggers that can be used or called from

other triggers.

The Structured Query Language, SQL, ic the key method working with datain a 4GE
environment. In addition to the normal database operations, SQL commands in triggers

are used to:

place data in fields of a form

e perform calculations on data in a form

o reformat data in a form

o check whether data exists in the database

o compare data in fields of a form.

With onc difference and two extensions, SQL commands in triggers are virtually the
same syntax as SQL commands in other ORACLE products. The major syntax differcnce

is that SQL commands in triggers do not end with a semicolon (;).

It is wise to test the SQL commands before they are placed in triggers. In general,

any SQL command can be used in trigger. However, there are some warnings:

e ‘SELECT’ commands may only be used in a post-change trigger (a kind of trigger
that is only activated when the value of a field is changed).

e Data modification commands (INSERT, UPDATE, and DELETE) may only be used
in commit (pre- and post-insert, update, and delete) triggers.

o If INSERT, UPDATE, or DELETE commands are used to modify a base table for

a block in the current forn:, it is necessary Lo update any data that might be on the

form.

When the operator wants to delete, insert, or update a record from a block, that

block has to belong to a table in the database. As mentioned before. cach table should

correspond to a base-table in the dutabase. This is necessary to make the changes to the
database. If this wasn’t the intention, the designer would not have to choose a base table

for that block.

Although it might seem to be a problem, there is a solution to this. If, on the same
page, there are several blocks together at the same time, and if the value of a field in one
of these blocks which has a base-table in the database has been changed, another field

in another block can be changed and committed too (the second block not having a base

table).

8.1.0.4 SQL*Plus SQL*Plus is a fourth generation language (essentially SQL
with additional features) designed to manage all interactions within ORACLE. It allows
the operator to create, modify, and join database tables; control database access; create
reports; and transfer data among ORACLE systems distributed on different computer

systems.

ORACLE’s version of the SQL language, SQL*Plus is the most functionally coniplete
and powerful SQL in the markel. SQL*Plus has outer join, hierarchical structuring, output
formatting, minus/difference and date/time operators, as well as a formidable selection of

row functions such as standard deviation, soundex, and null value replacement (6).

The SQL*Plus program can be used with the SQL database language and its pro-
cedural language extension, PL/SQL. The SQL database language allows the operator to

store and retrieve data conveniently. Through SQL*Plus, one can:

enter, edit, store, retrieve, and run SQL commands and PL/SQL blocks

format, perform calculations on, store, and print cuery results in the form of reports

list column definitions for any table

access and copy data between SQI, databases

o send messages to and accept responses from an end user

PL/SQL programs (called blocks) can also be used to manipulate data in the database.

PL/SQL blocks begin with DECLARE, BEGIN, or a block name. SQL*Plus treats

3-9

PL/SQL blocks in the same manner as SQL commands, except that a semicolon (;) or
a blank line does not terminate and execute a block. One can terminate PL/SQL blocks

by entering a period (.) by itself on a new line. Below is an example of how a PL/SQL

block looks:

SQL> DECLARE

2 * NUMBER := 100;

3 BEGIN

4 FOR I IN 1i..10 LOOP

5 IF TRUNC (I/2) = I/2 THEN ~--I is even

6 INSERT INTO temp VALUES(I,X, ’I IS EVEN?’);
7 ELSE

8 INSERT INTO temp VALUES(I,X,’I IS ODD’);
9 END IF;

10 X =X + 100;

11 END LOOP;

12 END;

13

One major difference between the ORACLE and INGRES SQL is that ORACLE
allows the use of variables to store table names. This enables the SQL ‘from’ statements
to be loaded at runtime (for example after the team’s affiliation is known in TWX). The

primary advantage of using variables is that the size of the SQL code can be cut in half.

3.1.0.5 SQL*ReportWriter SQL*ReportWriter is a general purpose tool for
developing and executing reports. specially designed for application developers who know

the SQI. language. With the SQL*Report Writer, one can:

o combine multiple SQL statements in a single report to easily define complex rela-

tionships

e create ad hoc reports using a rich set of defaults

¢ performs complex calculations

e run reports interactively or in productjon environments with flexible runtime param-

eters

o fully customize all parts of the report definition.

In order to build reports successfully with SQL*ReportWriter, these steps should be

followed: First, the Action choice is selected from the Main menu and New is selected

from the pull-down menu.

The next step is to define one or more queries. Queries enable the user to specify
the data he plans to use. Ile can access data from one or more tables residing in onc or
more databases. He can use multiple queries in a report, and he can create relationships
between them. This is also a good time to enter a comment describing the purpose of the

report, and at the same time to define the page size and margins.

Once the queries are defined, the user can use group settings to specify where groups
of data from the queries should be placed in the report. One can think of groups as a tool

to perform ’coarse’ or overall placement of data in the report.

3.1.0.6 Programming Tools in ORACLL The programming interface allows
application programmers to access ORACLE from within third-generation languages. This

interface supports languages such as COBOL, C, BASIC, FORTRAN, Ada, PL/1, and

Pascal.

SQL is a non-procedural langnage. That is most statements are executed indepen-
dently of preceding or following statements. The non-procedural nature of SQL makes it

a very easy language to learn and to use.

On the other hand, 3GL languages like C, COBOL, or FORTRAN are procedural.
That is, most statements are executed depending on proceeding or following statements
through such constructs as loops. and conditional control statements. The procedural

nature of these languages makes them very flexible.

The ORACLE Call Interfaces, OCls allows the user to write applications that take

advantage of both the non-procedural capabilities of SQL and the procedural capabilities

3-11

o performs complex calculations

o run reports interactively or in production environments with flexible runtime param-

eters

o fully customize all parts of the report definition.

In order to build reports successfully with SQL*ReportWriter, these steps should be
followed: First, the Action choice is selected from the Main menu and New is selected

from the pull-down menu.

The next step is to define one or more queries. Queries enable the user to specify
the data he plans to use. He can access data from one or more tables residing in one or
more databases. He can use multiple queries in a report. and he can create relationships
between them. This is also a good time to enter a comment describing the purpose of the

report, and at the same time to define the page size and margins.

Once the queries are defined, the user can use group settings to specify where groups
of data from the queries shovld be placed in the report. One can think of groups as a tool

to perform ’coarse’ or overall placement of data in the report.

3.1.0.6 Programming Tools in ORACLFE The programming interface allows
application programmers to access ORACLE from within third-generation languages. This

interface supports languages such as COBOL, C, BASIC, FORTRAN, Ada, PL/I, and

Pascal.

SQL is a non-procedural language. That is most statements are executed indepen-
dently of preceding or following statements. The non-procedural nature of SQL makes it

a very easy language to learn and to use.

On the other hand, 3GL languages like C, COBOL, or FORTRAN are procedural.
That is, most statements are executed depending on proceeding or following statements
through such constructs as loops, and conditional control statements. The procedural

nature of these languages makes them very {lexible.

The ORACLE Call Interfaces, OCls allows the user to write applications that take

advantage of both the non-procedural capabilities of SQI and the procedural capabilities

3-11

of a 3GL. These applications can be more powerful and flexible than applications written

in either the host language or SQL alone.

The OCIs allow the user to communicate with ORACLE through a subroutine library
supported for several high-level programming languages As Figure 3.4 shows, the user

compiles and links an OCI program in the usual way.

SOURCE

WITH OCI CALLS
PROGRAM

COMPILER

LINKER

Figure 3.4, OCI Development Process

(13)

The OClIs support all SQL query, data manipulation, data definition, and data control

facilities that are available interactively through SQL*Plus.

3-12

3.2 INGRES’s 4GL

INGRES is a distributed relational database system offered by INGRES Corporation
of Alameda, California. Versions of INGRES also exist for micro, mini, and mainframe
systems. However, INGRES is written in the Assembly language of the target system, and

is available on fewer machines and operating systems than ORACLE(19).

Being different from ORACLE’s 4GL, INGRES uses general purpose 4GL. Under
this, there are two categories: the ones that combine both the DBMS and 4GL and the
ones that only have a 4GL. INGRES has both of them: A DBMS and a 4GL. In INGRES,
4GL is more visible to the application programmer/designer, so that, a separate block can
be seen for INGRES 4GL. The advantages of 4GL in INGRES is more or less the same as
the ones in ORACLE. The INGRES facilities can be seen in Figure 3.5.

3.2.1 Fourth Generation Environment ({GE) Primarily, the INGRES 4GL speci-
fies the menu operations by controlling the user’s movement among the frames and pro-
cedures of an application by forms (ABF) (Figure 3.6 illustrates the INGRES applicaticn
components in 4GE). Besides the operations that manage the applications, the INGRES
4GL can combine some certain operations with each frame (a frame contains a form and
a menu; it’s the basic element in an ABF application) in order to access the database

directly and to control the form that displays the data(17:3-15).

By using INGRES 4GL, users can(17:4-6):

e Access the database to retrieve , append. or update rows

o Manipulate forms by specifying initialization, defining field and key activations, and

setting field attributes
¢ Perform calculations on items in the form, whether displayed on the screen or not

e Call other frames, INGRES 4GIL procedures. INGRES modules, or the operating

system
o Use hidden fields for calculation or data that the user does not need to sce

e Carry out multi-row queries with submenus

Interactive SQL EMBEDDED LAN QBF

x £

INGRES/STAR INGRES/NET
Y r 4

OPEN ARCHITECTURE

Structured Query Language
INGRES/MEN%‘_ INGRES RDBMS ABF

OPTIMIZER | DICTIONARY

_ DISTRIBUTED DATABASE,
VIFRED EMBEDDED SQ)
INGRES 4CL VI?%I&SX{:}}“ REPORT WRITER

Figure 3.5. INGRES Facilities(19)

¢ Perform selective processing on the table fields

Application Development: The INGRES facility for creating customized, forms-
based applications is Applications-By-Forms (ABF). An ABF uses standard INGRES forms
and menus to access a database and perform a series of operations (such as q.eries, update
and reports). Using ABF one can define, test, and run fully developed applications without

having to use a conventional programming language.

Applications-By-TForms lets the user create an application without having to worry
about the location and management of source files, object files, linkage programs, com-
pilers, editors, and the other tools of conventional programming. ABF uses INGRES

uset interfaces such as the Visual-Forms-Editor, Query-By-Forms, and Report-By-Forms

3-14

User specified Frame

- 4GL
-------- ‘é(i(l{e Procedure
F— Code
Forms from
QBF Frame VIFRED Database Tables
L c
| — ustomer
[I QBF Table
I) N— Subsystem
T Product
. Table
0 Default
Report Frame F?o:llrl\s Order
) T Table
___________ Report
Writer Codk

Graphic Frame

Report

VIGRAGH
Subsystem

@

Figure 3.6. INGRES Application Components(18:11)

to create a sequence of forms and reports that will let the application users manipulate
the data in a convenient way. The user of an INGRES application normally needs to
access database table information on the frame, then lets the user chose the kind of data

manipulation required.

In developing the application within ABF, the designer uses INGRES 4GL to specify
the applications’ gencral structure and to define any custom processing steps that the
application uses. e designs the overall flow of an application in a series of consistent,
easy-to-use menus. He can then fine-tune an application by indicating what is to happen

when the application user chcoses a menu operation.

3-15

The form is the input and output mediun for a forms-based application, and a large
part of any forms application involves operations that get data from and display data to
the form. INGRES 4GL makes such interactions easy to specify and uses the form as an

integral port of the 4GL specification.

In INGRES 4GL the designer can code statements based on either of the INGRES
query languages, SQL or QUEL, to access and manipulate the database. Procedures
accessed through the 4GL activations can be written in 4GL itself or can be based in
standard programiming languages such as C, Pascal, and others. For additional flexibility,
these procedures can include embedded query language statements (Embedded SQL or
EQUEL), providing easy access to the INGRES database at all levels of programming

endeavor.

One of INGRES 4GL’s major strengths is incorporating the power of ANSI Stan-
dard SQL and Embedded SQL into itself, thus greatly reducing the need to call separate

embedded language procedures from ABF.

An important point to remember here is about the language to be used in developing
the application. The designer can only use one language inside an application. le can not

mix it with the other one.

3.2.2 Applications-By-Forms (ABF) ABF is the INGRES facility {or creating cus-
tomized, forms-based applications. An ABF application uses standard INGRES forms and
menus to access a database and to perform a series of operations such as queries, updates,
and reports. ABF uses user interfaces such as the Visual-Forms-Editor, Query-By-Forms,

and Report-By-Forms to create a sequence of forms and reports.

ABF has several distinct advantages for application development:

o A code manager for all files related to an application

A dynamic test environment

The use of INGRIES modules

The use of INGRES 4GL for custom processing

3-16

o The need for fewer lines of code than in conventional programs

ABF automatically provides access to the system editor and to the Visual-Forms-

Editor as the elements of the applications are created.

ABF supplies a test environment for the applications. The applications can be run
and debugged befure they are actually defined. ABF provides default actions if an unde-

nned object is referenced. This environment allows the small pieces to be tested.

By using the readily available blocks, new applications can be created easily. The user
can also use queries, forms, and report: by linking them together. Ilc can also incorporate
INGRES modules such as Query-By-Forms, making INGRES tools directly available to

the application developer(17).

An ABF application may include these components:

o Frames: The basic operational units of an ABF application. The end user interacts

with the application through forms and menus defined within the frame structure

o Procedures: Separate modules of INGRES 4GL or a host language code that perform

specific operations
o Tables: Database tables containing data on which the application operates
o Reports: Data formatted for the display or printing

o Graphs: Data presented in a visual, graphics format.

Frames: Central to each ABF application is a collection of related units called
frames. An application is composed of frames. Frames let the user manipulate the infor-
mation in a datzbase. A frame visually consists of a form, which can be considered the
equivalent of a form on a picce of paper, and a menu of operations through which the user
can query the database, run reports, use INGRES user interfaces, run operating system

programs, and perform cther tasks.

There are four types of frames:
o User-specified frames: Custom frames created by the application developer

3-17

o QBF frames: Frames that perform database queries using Query-By-Forms
o Report frames: Frames that display or print reports

e Graph frames: Frames that display graphs

For each user-specified frame, the designer must create an INGRES 4GL specification
defining each menu operation along with statements that determine what happens when
the user chooses each operation. In an INGRES 4GL specification, the user can start up
other frames, run INGRES user interfaces, run external applications or system programs,
display his own help files, and performs specific data manipulations. He uses the system
editor to create the INGRES 4GL file, which Applications-By-Forms stores for him in the
directory he chooses for source code files. Being different from ORACLE, since there is no
concept as ‘base table’ for cach ‘block’, the update, insert, and delete statements can be

used anywhere in the frame.

Whenever the designer includes a QBF frame in an application, he is specifying that
the application use Query-By-Forms to access the database. When defining a QBF frame,
the designer might specify or create the table of JoinDef (join definition) and the form
with which to run QBF. For queries involving one table only, the Join Definition phase is
optional. The designer can also specify command line flags to be used in the call on QBF.
When the frame is activated, QBF begins exccuting in the appropriate fashion based on
the form, table, or JoinDef, and flags specificd. In designing the application, the designer
can use a QBT default form as is, or he can enhance it with the Visual-Forms-Editor. QBF
frames are particularly useful for operations that interact directly with the database such

as adding new rows to a table or retrieving data from a series of tables.

A report frame consists of a report and a menu for running it. The frame may include
a form on which the user can enter one or more values used by the report at run time. The
designer can create the form using the form editor. No 4GL code is necessary for a report

frame.

Graphs help present data in a clear. visually striking way. A graph is similar to a

report except that the data are displayed in a bar chart, a pie chart, or a plot.

3-18

Procedures: A user-specified frame may 1equire specific operations that differ from
the capabilities provided by existing INGRES user interfaces. For such operations, the
application can call a procedure written in INGRES 4GL or in programming languages
such as C or FORTRAN. A procedure is an INGRES 4GL or other host language routine
that is declared in a procedure definition. A procedure can be called by frames or other
procedures within an application. Note that the reverse is not true; that is, a procedure

cannot call a frame.

A procedure, like a subroutine, can execute frequently used sets of statements and
then return data to the calling frame when it has finished. Procedures are often used for

frequently performed calculations or other processing. An example:

procedure addtax (cost = float8,

taxrate = floatd) =

begin

cost = cost + (cost * taxrate);
return cost;

end;

The procedure above, ‘addtax’, performs a frequently used tax calculation, then

returns a result to the calling frame.

3.2.3 Query-By-Forms (QBF) QBF is a visually oriented, forms-driven interface
to INGRES. QBF allows both new and experienced users to access tables in INGRES
databascs and perform routine data retrieval. The users may retrieve and modify data from
database tables without needing to learn the commands of QUEL o1 SQL, the INGRLS

query languages.

The tasks the designer can perform using QBIF are divided into two phases: Join
Definition and Query Exccution. Within the Join Definition phase. he might create the
objects that QBT uses to retrieve and manipulate data in the database. In Query Fxecu-
tion phase, he performs the retrieval and manipulation of data using the objects created

previously (or by default).

3-19

QBF uses forms on the terminal screen in two distinct ways. In the Query Execution
phase, a form is used to append, retrieve of modify data in the database tables. In the
Join Definition phase, a forms interface enables the user to identily and define relationships

between tables to be accessed.

From QBF, the user can access other features of INGRES that are forms-based parts.

Two of thesc features include different data input modes and an extensive help facility for

using QBT.

A companion product of QBF in the INGRES line of forms management systems
is INGRES/FORMS Visual-Forms-Editor (VIFRED). VIFRED allows the user to modify

forms in the following ways:

o change the appearance of a form to reflect the application more clearly.

o change the attributes of the fields to protect their contents or to display their data

in a manner more consistent with their meaning.

e specify range checks and cross-field checks to maintain the maximum possible in-

tegrity for the data in th~ form.

When QBT is invoked for some task, QBF generally provides a default form for the
work. However, because VIFRED can be used to edit a form, the user can instruct QBF

to provide the edited form instead of the default.

3.2.4 Visual-Forms-FEditor VIFRED is a visually oriented, menu-based editor de-
signed to edit forms. It is used to edit the layout of system- and user-defined forms. With
VIFRED, the user can change the appearance of the forms that Query-By-Forms (QBF)
uses, or he can create his own forms for use in an application program. VIFRED edits,
redefines or creates forms for the terminal screen. On the other haud, QBI' is concerned
with data manipulation. QBF queries and updates actual data values stored in an IN-
GRES database. The user can neither use QB to edit a form. nor VIFRIED to edit actual

data. A sample VIFRED is shown in Figure 3.7 as it is scen on the screen,

The menus in VIFRED display the commands. Moreover, because VIFRED is vi-

sually oriented, the form is always on the screen during the time it is being edited. The

3-20

Sslary Information:

desvemenmnnacccaasanns asvee temcsmensvmanncsnnnsne -+
Iname tealary !
]---nnnn-----nlllo-n:tl--oou-n-----------.nl-nll
ie 1. .|

PSR S S S)

Creste Oslete Edit Move Undo Order Save Helr End Quit

Figure 3.7. Visual Forms Editor in INGRES

form can be used for display or manipulation of data. However, the quality of a form is
greatly dependent on the designer. How the form is designed and implemented can make
the difference between an efficient and wasteful lata processing. A properly designed form
engages the user, making the terminal screen a more human environment. This can opti-
mize the work done by that user. Therefore, energy devoted to the definition of forms in

a computer system has a significant effect on the overall utility of the system.

3.2.5 Report-Writer The INGRES report writing facility allows the user to create
highly formatted listings of data from his database in a flexible manner. The Report-Writer
can be used to create organized summaries of data for inclusion in other documents and
to produce regular listings of data for management and production needs, as well as for ad

hoc purposes.

Capabilities of the Report-Writer include the following:

e Use of QUEL or SQL. INGRES’s powerful query languages to specify the data to be
used in the report
o Features similar to word-processing capabilities, such as centering, justification and

automatic pagination

3-21

,' Personnel Listing

Department Naze ' Salary
admin malcolnm 2,750
cosmetics georgia 1,750
shoe edna 2.000

mike 1,500
toy sally 877

ted 2.615

Figure 3.8, Reports-By-Forms in INGRES

» Complete flexibility in specifving how the report will look

o Powerful and automatic aggregation capabilities over changes in value of the data

columns, as well as over pages or the entire report

o Storage of report specifications within the database, so that the user can easily run
a report. le can also specify parameters to stored reports to vary the data to be

reported.

Reports-By-Forms is flexible and easy to use, and provides tools adequate to the
task of customizing most default report definitions (sec Iigure 3.8). The designer (or the
user) can also use RBF to define the report formatting commands on which to base a more
complex report, and subsequently write out a text file containing those commands. Then
he could use a text editor to further enhance the report definition and finally use report

to compile the changed report into database.

'The ability to produce reports is a basic and essential feature of a computer sys-
tem A report can be considered the orgavization of data for orderly output in print or
on a terminal screen. When yeports are written in INGRES, data are retrieved fiom a
database, sorted formatted according to pre-established specification and written to a file

listed directly to an output device. A repoit combines the two basic elements: data and

3-22

specifications for output. Both the data to be reported and the output specifications can
be defined by the users or generated as system defaults, both within the context of special

repo1 t-writing software.

3.2.6 Programming Tools in INGRES In INCRES, embedded SQL is an embed-
ding of the SQL database into standard procedural programming languages, such as C or
Fortran, known as the host languages. Embedded SQL is compact and powerful, giving
the user access to a full range of INGRES database and forms-control functions within
an application. It includes all the standard SQL commands that within an application.
It includes all the standard SQL con mands that are available in interactive, forms-based

applications with or without database access.

Embedded SQL gives the user full power of the INGRES Forms Run-Time Systes.
(FRS) in order to create forms-based applications. Using forms the user can create with
the Visual-Forms-Editor, he can move data to and from forms, he can switch forms from
one port of an application to the next, and he can specify the operations he can, as a user,

perform on the data displayed in the form.

3-23

3.3 The Comparison

In the low level, there are some differences between the ORACLE and INGRES
4GLs. A comparison of the canonical features will show these. This comparison is done
by looking at some of the major characteristics that are peculiar to a Fourth Generation

Language.

e ENVIRONMENT: ORACLE and INGRES have both two canonical modes to work
with; interactive and procedural. In ORACLE, the interactive mode is used via
SQI*Forms. The designer has a great amount of flexibility in this almost completely
interactive facility. ORACLE allows the designer to edit .INP files in the 4GL code.
This procedural application design is harder and takes a longer time than the inter-

active mode for a designer

INGRES’s interactive QUEL (SQL) is an interface that enables the designer to ma-
nipulate data in database using QUEL (SQL). As it is in ORACLE, the application

can be edited in 4GL in a procedural way as well.

PROCEDURAL LANGUAGE: Procedural control commands, which perform various
processing tasks such as controlling the flow of the execution or handling processing

cerror conditions represent integral parts of both languages. Statementsin a procedure

can be classified as:

1. Directive
2. Command

3. Procedural control

In ORACLE, these statements are either in SQL*Forms, appearing as the menu

items, or they are within the triggers. Some of the examples:

CALL form
CALLINPUT

EXIT

GOBLK block

GOFLD [block.]field
MENU

In INGRES, these statements can take place in the ABF as defaults or they can be

typed in the source code. Some INGRES statements are:

CALL

CALLFRAME
CALLPROC

EXIT

NEXT

IF..THEN. .ELSE

DATA DICTIONARY INTEGRATION: When a database is created, INGRES sets
up the system catalogs, tables that hold information about that particular database
as the designer or the user works with it. These system catalogs store specifications

for the tables, indexes, forms, reports, and queries associated with that database.

In ORACLE, the data diction-ry is a set of tables to be used as a read-only reference

guide about the database. For example, it will tell

~ the usernames of ORACLE users
— rights and privileges they have been granted

— names of database objects (tables, views, indexes, clusters. synonyms, and se-

(uences)
- information about primary and foreign keys
— default values for columns
— cubstiaints applied to a table

— how much space has been allocated for. and is currently used by, the objects

belonging to a database user

e DATA TYPES: In ORACLE, from the list of SQL*Forms field types, the data type

for any field cani be determined. These are:

!

CHAR fields may contain any combination of displayable characters, including

letters, digits, blank spaces, punctuation, and special characters.

ALPHA fields may contain any combination of letters, either upper- or lower-

case.
TIME fields may contain a time of day in the format HI{24:MM:SS.

NUMBER fields may contain any number, with or without a sign, or decimal

point, or scientific notation.
INT fields may contain any integer-a number without a decimal point.
MONEY fields may contain a number representing a sum of money.

RNUMBER, RINT, and RMONEY fields are right-aligned, instead of left-

aligned.
DATE fields may contain a date in the ‘ormat DD:MM:YY.
JDATE (Julian Date) fields may contain a date in the format MM/DD/YY.

EDATE (European date) fields may contain a date in the {format DD:MM:YY.

In INGRES, the data tvpes are:

CHAR(NY) is the fixed-length character string including ouly the printable char-

acters.

VCHAR(N) is the variable-length character string including all the characters

except the NULL.

VARCHAR(N) is the variable-length character string including all the charac-

ters.
F(N) is the floating point number.
FLOAT is the same as f(n).

I(N) is the integer number with a length of two bytes.

3-20

— INTEGER is the integer number with a length of four bytes.
~ DATE data type columns holds absolute dates, absolute types, or time intervals.

— MONEY data type contains decimal currency data. INGRES provides great
flexibility with regard to the money data type. Using environment variables or

a set command, the local currency conventions can be adopted.

The data types for a 4GL and how these are implemented in ORACLE and INGRES

are summarized in Table 3.1

Table 3.1. Canonical Data Types

Canonical
data type | ORACLE | INGRES
character CHAR CHAR(N)
ALPHA VCHAR(N)
VARCHAR(N)
integer INT I(N)
INTEGER
float NUMBER | F(N)
FLOAT
date DATE DATE
JDATE
EDATE
money MONEY MONEY

e DATA ENTRY: In ORACLLE, data can be entered in the field, block, or form level.
The INSERT statement inserts one or more rows into the table. The row that is
recently entered becomes the last row in the table, if there is more than one row in

the table.

In INGRES, rows can be called with nunmibers. For example:

INSERTROW ROWNAME(4)

opens up a new row immediately following row (4) in the table field.

In ORACLE, inserts can be made to which are defined as the base tables in the block

levels. In INGRES, there is no limitation.

3-27

DELETE and UI'DATE statements works the same way in both database systemns.
INGRES has a different function called validate. This function performs validation
checks on simple fields or table fields as they are defined with the Visual-Forms-
Editor. If it is used without a parameter, the validate function performs » validation

on every field in the current form.

In ORACLE, this is transparent to the user, and done by SQL*Forms. The values

which are entered into the fields are immediately clhecked during the run-time.

CREATING THE ENTRY FORM: In ORACLE, the application starts from a form
called the entry form. To run the application, the name of this form is typed in the

operating system prompt. INGRES does this via a frame called topframe.

CREATING A DEFAULT SCREEN: ORACLE creates a default screen in the block
level. Selecting the default item from the BLOCK window and specifying the default

table name is enough to see the fields of that table.

In INGRES, the designer can do this in ABF in two steps. While in QBF, VIFRED
should be activated and from the ‘create operations’, ‘table default oper:ution’ is
chosen. INGRES has a unique and readily available function in the QBT level. This
function is called ‘Jointable’ which makes the joining of two or more tables easier,

when this is necessary.

TESTING: In ORACLE, testing is realized in the same way as running an applica-
tion. Additionally, there are two debugging utilities. The first one simply works by
selecting the ‘debug’ operation in the form level. The second one is a pre-defined
key. When this key is hit, after running into an error message, it gives detailed
information about the error.

INGRES applications can be tested in the run-time. as well. In both systems, it
is better io run (test) the application on the system level. This will decrease the
amount of overhead imposed by SQL*Forms and ABF, and gives a quick response

to the user.

3-28

o QUERIES: In ORACLE, queries can be executed either by the pre-defined key or it
can be typed into a trigger statement. When the trigger statement goes off, the query

is executed. Complex queries must be typed in INGRES in the 4GL code itself.

In ORACLE triggers seem to be an advantage. Instead of using a pre-defined key,
writing SQL statements inside the 4GL code, or even instead of typing the 4GL code

itself, triggers can be used, saving the application developer a lot of time.

In INGRES, application Hows with the INGRES-defined or user-defined functions.

The canonical features of a 4GL are satisfied in both database systems. Ilowever,
the way these features were satisfied is not the same. Below, in Table 3.2, the canonical
features of a 4GL are listed. The chieck marks indicate that that feature is satisfied. As
seen, both ORACLE and INGRES satisfy these features. These are very general and apply
to most applications. After the nceds for the application are specified. the satisfying 4GL

product can be used.

3-29

Table 3.2. Canonical Features of 4GLs(1)
[Feature | ORACLE | INGRES |

Siniple queries v v
Simple queries and updates v v
Complex queries and updates v v
Database creation N v
Intelligent database

operations Vv Vv
Generation of data-entry

screens for key-entry

operations Vv Vv
A procedural language v v
Spreadsheet manipulation v Vv
Multidimensional matrix

manipulation

Report generation Vv Vv
Report manipulation Vv Vv
Graphics manipulation v N
Decision support for

What-if questions Vv v
Mathematical analysis tools

Financial analysis tools

Text manipulation

Designed for on-line

operations Vv
Easy debugging v

3-30

IV. Building The Application In ORACLE

This chapter describes the process of building database application using the SQL*Forms
by ORACLE. The Theater War Exercise is an implemented application in INGRES RDBMS.

In this thesis effort the same application is implemented in ORACLE.

4.1 Approach
In designing the TWX application, the prototyping approach was used.

The word ‘prototype’ literally means ‘first of the type.” The approach is to create a
prototype for experimentation. The emphasis is on determining the adequacy of a proposed
solution before investing in a large final system. The following general activities occurred

in this design:

o Preliminary logical design of the database.

The database that supports the TWX was already created. The relationships between
the entities were realized. So, there was little to do in designing the logical database
except the transfer of the raw data from the old system to the new one. The raw

data which was kept in database tables was transported to ORACLE.
o Construction of the generation modules.

In the construction of the modules, the logical flow of the program was the key to
the design. To have a better idea about this flow, the application in the old system
was observed and the game, the Theater War Exercise, was played. In this phase,

the modules were distinguished.

In Figure 4.1. these modules are shown. EFach rectangle and the cloud represent
a module that are dependent on another. The hard-lined rectangles represent the
modules that are completed. whereas the dash-lined rectangles represent the ones
that are to be completed. The cloud is the Land Simulation module which originally

is not implemented in the INGRES RDBMS.

AAFCE MENU

INTRODUCTION

LOCK
SIMULATION

20R 4
ATAF

APPORTION

EXIT

Figare 4.1. The TWX Application in ORACLE

4-2

o The necessary changes to the datubase.

In Chapter 111, a detailed discussion is given about the ORACLE and INGRES 4GLs.
There is a major ditference between these two RDBMSs. This is assumed to be a big
disadvantage for ORACLE when designing an application in SQL*Forms. However,

later on this turned out to be an advantage.

In ORACLE SQL*Forms, in the block level, in order to update, delete, or insert data
to the database, a base-table has to be chosen. Otherwise, the data manipulations
can not be accomplished. This brought up a problem. If a base-table has to be
chosen for each block, and , the source code practically had to be doubled, because
the structure of the tables for the users BLUE and RED are identical but the data

is different.

At this point, an other feature of ORACLE was used. ORACLE allows the designer

to define tables as variables, thus, cutting the source code down in half.

In order to assign variables, some changes were made to the database itself. Since
the tables were created in the database under the name ‘OPS$TWNX’, The database
was connected under this name. Then two user names were created and they were
given access to the database. This is accomplished by this command which was given

after the SQL prompt in ORACLE’s SQL*Plus:

SQL> GRANT CONNECT, RESOURCE TO USER BLUE
IDENTIFIED BY PASSWORD;

SQL> Grant succeeded

SQL> GRANT CONNECT, RESOURCE TO USER RED
IDENTIFIED BY PASSWORD;

SQL> Grant succeeded

At this time, these two new users were given access only to connect to the system.

A user must have CONNECT privilege in order to access data in an ORACLE

database. Every user with CONNECT is identified by both an ORACLYE username

4-3

and a password. ORACLE usernames must be distinct within a database, regardless

of their passwords. A user with only CONNECT privilege may (14):

access the ORACLE database

query (look at) other users’ data (SELECT from tables and views), if SELECT

access has been granted to the user or to the public

1

perform data manipulation operations (INSERT, UPDATE, DELETE) on other

users’ tables, if the appropriate access has been granted

create views, synonyms, and database links

perform table or user exports.

If a user has both RESOURCE and CONNECT system privileges, then he has all the
privileges associated with the CONNECT privilege and in addition he may create
database objects, such as tables, indexes, clusters, and sequences. He may also enable
or disable the auditing of his objects and grant to or revoke (opposite of grant) from

other users privileges on his objects (10:16-18).

The tables in the OPS$TWX account are related to both users BLULE and RED.
Some of the tables are being used in common by both users. All the tables in the
database (125 tables), were given access to the related users one by one. If the table
was related to user BLUE, it’s given access to the BLULE user by this command in

SQL*Plus while connected as OPS$TWX:
SQL> GRANT ALL ON TABLE TO BLUE;

There are certain options coming from the word GRANT in the above statement. If
SELECT is used then the granted user can select. view and query tables from the
specified table. 1f UPDATE is used, then the user can update the table which is
granted. In case of a DELETE, user can delete the data. If the option ALL is used,

the user has the options that are explained above.

The tables that specifically belong to the user BLUE were granted to that user with

all the privileges. Because, the user BLUE should be able to manipulate the data

-4

that belongs to him. The same steps were taken for the user RED. Eventually, it
was seen that some of the tables are being used commonly. In these cases, both users
were granted with the same privileges. So, in the application both users will be able

to read the data in these common tables.

In some phases of the application, the user BLUE needs to check some tables that
are granted to the user RED. The same necessity occurs for the RED user. For these
tables, a SELECT permission is given to each side, thus, allowing them to view the

data but not to change it.

ORACLE allows the user to call the tables in other names by creating synonyms for
them. Synonyms are the names assigned to a table or a view that may then be used
more conveniently to refer it. If the user has access to another user’s tables, as in this
case, he might create synonyms for it and refer to it by the synonym alone, without
entering the user’s name as a qualifier, which is somewhat cumbersome (11:5-64,5-

65).

The command to create a synonvm is:

SQL> CREATE SYNONYM [user.]lsynonym FOR [user.]table;

Synonyms were created for every table that is granted to users BLUE and RED by
connecting to SQL*Plus in their names and passwords. The tables that are used
only by BLUE are identical to the ones that are used by RED. The number of
fields and the field names were also identical. This became an advantage in creating
synonyms for the tables in BLUE and RED accounts. Since the tables were identical
the same synonyms were created for the tables. In the design phase, this became
a real advantage. In the block level (in SQL*Iorms) only one table name could be
used for each block. Since the SQL*Forms recognizes the user when he is connected

to the forms, it makes the necossary changes to the appropriate tables.
Obviously, the same synonyms were used for the common tables. Such as WEATHER,
USER.ID, or, TERMINAL.CON. Creating the synonyms provides both the data

independence and location transparency: synonyvms permit application to function

without inodification regardless of which user owns the table or view and regaidless

of which database holds the table or view (11).

After these changes to the database, the application could be designed.

4.2 Designing The Applicalion

In th's :ction, instead of explaining the design phase of the TWX application in
detail, step by step, a general methodology to design ‘any’ application is followed. The
examples are especially chosen from the TWX application. Since only examples are given,
this section doesn’t cover the TWX application as & whole. Given the information above
and below, readers of this thesis who are eager to learn more about the application are
encouraged to see the application themselves. Not only can they see the application in the

design phase, but also they can run the application and become a part of it.

For the time being, the application is running on a Sun386: which is located in the
Wargaming Lab in AFIT. It can be run on any Sun station by remotely logging on to Moss,
the current system. The forms can be run only in the shell environme ut. If the window

size is not big enough and if the run command is not given in the shell, the system will be

locked.

The main unit in building the application is a form. An application consists of one or
more forms. It’s » good idea to break down the application into as many forms as possible.

This has some advantages. It decreases the form saving time and the form generating time.

On the other side, if there are separate logical blocks, cach of these blocks can be
designed as different forms in modules as it is in an Object Oriented Language. This
improves the understandability of the code itseif. In addition, if the application is to be
modified or maintained later, these ‘moduics’ become really handy. If one of the foims

were to be modified, this would not effect the others.

The CHOOSE FORM window serves as 2 main menu in ORACLEs SQL*Tormms.

Here the name of the form that is to be worked on is entered (Figure 4.2).

Below, the different functions in the FORM level are listed:

4-6

CHOOSE FORM

1]
: Name :
| PASSWORD_ . _________.______._.. !
: Actions: :
! CREATE MODIFY LIST :
| RUN DEFINE LOAD
)]
Lo_FILE o GENERATE]

Figure 4.2. Forms Design in SQL*Forms

< CREATE > creates a form.

< MODIFY > lets the designer make changes to an existing form.

< LIST > provides a list of existing forms that can be worked with.

< RUN > runs a form for the operator to use or for the designer to test.

< DEFINE > can change the form name or title and the validation unit. Also form

triggers can be triggered.

< LOAD > loads an .INP file into memory. To preserve the new form, it should be

saved, and then it will appear in the list of forms.

< FILE > can save or discard changes to a form, create a copy of the form under a

new name, rename the current form, or delete the form.

< GENERATE > converts the form definitions for the current form in working
memory into a file that can be RUN. A form can not be run until it is generated. Any
time a form has been modified, it must be regenerated to incorporate the changes.

Otherwise, the older version would be running.

4.2.1 Crealing ¢« Form After the whole application is divided into modules in the
design phase, one of the them is chosen to be the entry module. Fach module corresponds

to a form. Namely PASSWORD is the entry module that is designed as a form in the

TWX application. Now the whole applicatiou can be run by starting from this entry form.

In Figure 4.2, the form PASSWORD can be seen.

To create the entry form (or any form), the name of the form must be typed into the
NAME item in the CHOOSE FORM window and the CREATE item is chosen. Soon the
CHOOSE BLOCK window can be scen (Figure 4.3).

=z
~
=]
=
o

L
I
|
!
I
!
I
[}
[}
[
1
1
[}
1
1
1
1
[}
}
1
{
1
1
1
1
1
1
1
[}
!
r
1

J

CIIOOSE BLOCK

] |
))
\ Name :
E PWORD. oo oo f

__i Page Number 1 i
I Actions: :
) CREATE MODIFY DROF
E LIST FIELDS DEFAULT,
L

PREVIOUS NEXT !

Figure 4.3. Block Design in SQL*[Forms

4.2.2 Creating Blocks A form consists of one or more blocks. Blocks are the build-
ing units of cach form. [ach corresponds to one database table called the basc-table.
However, if the block won’t be updated, deleted, or inserted into, it may not have to

correspond to a database table. An example of this is a block that has only text in it.

Some important items and their functions in the CHOOSE BLOCK window are:

o < CREATFE > lets the designer create a new block and puts him in the screen
painter. Screen painter is the part of SQL*Forms where the custom forms aie created
and modified. In the sereen painter blucks and fields are defined and modified and

triggers are specified.

o < MODIFY > lets the designer make the changes to an existing block. If an
existing block name and the correct page number for that block appear in the window,

selecting MODIFY displays the block in the screen painter.
e < DROP > deletes the block that is chosen.

o < DEFAULT > creates the blocks with default settings. This is a quick and easy

way to construct a form.

As shown in Figure 4.3, the PWORD block under the formm PASSWORD is not
created by the defaults, because. there is no base-table supporting this block. Even though
the fields in this block are coming from three different tables in the database, no base-table
is chosen. Reason being that there is no update, delete, or insert to and from any of these

tables in the database.

If all the fields were coming from a table in the database then that particular table
could be chosen as the base-table for that block. In. this case, block can be created by using
DEFAULT item. Besides, using the TABLE subitem in this DEFAULT window, one can
pick the right table. SQL*Forms can let the designer view all the tables in the database.
All the designer have to is to highlight the right table and hit the return key. By using the

COLUMN - ‘bitem, one can pick the desired fields from a table in the database.

If the designer wants to create a multi-record block-one that can be displayed as
several records from a field in the database at once, he can do this in the block level. In
Figure 4.4, SPECIFY BLOCK OPTIONS window includes the parameters that could be
changed. Although the screen painter displays only one row from each field, when the form

is run, the specified number of rows will be seen on the screen during the runtime.

4-9

[aliadiadiedindiadiaiiadiadbadiathaiindiethedhdh i di i

Narmne APPRT !

Description e e i Ly
SPECIFY BLOCK OPTIONS

1 i
APPORTIONMENT) :
Table Name: : Check for unique Key :
APP_HIST : *Display in_block_menu |
1}
Actions: : 1
TRIGGER) Number of Rows Displayed 4 :
COMMENT : Numbers of Rows Buffered 4 :
_} Numbers of Lines per row 3 :
________________) |
| H
L o e st e e e e e o e o e o e o hm o e e o= e <
MISSION TYPE APPORTIONMENT
OFFENSIVE COUNTER AIR (OCA) ———— -
OFFENSIVE SUPPORT AIR (OSA) %
AIR INTERDICTION (IND) %
DEFENSIVE COUNTER AIR (DCA) %
- =%

Figure 4.4. The APPORTIONMENT Block in the Design Phase

4-10

If any of the fields on the bluck on which multiple records are shown. does not belong
to the base table chosen for that block, then, what will be seen on the screen during
the runtime will be a clutter. One of the blocks (APPORTIONMENT) can be seen in
Figure 4.4 as it is in the screen painter. Again in Figure 4.5, the same block is seen during

the runtime with the multi-records.

SEMINAR : 1
SIDE : BLUE
CONFLICT DAY : 0

PROJECTED APPORTIONMENT FORM

MISSIONTYPE . APPORTIONMENT _
DEFENSIVE COUNTER AIR (DCA) DCA 25 %
OFFENSIVE COUNTER AIR (OCA) OCA 25 %
AIR INTERDICTION (IND) IND 25 %
OFFENSIVE SUPPORT AIR (OSA) OSA _ _2_’)_‘7(,_ _

100 %

Figure 4.5. The APPORTIONMENT Block During Runtime

4-11]

As explained earlier, a page is practically the same as a sueen. On a page, there
can be more than one block. The multiple tables might be needed to be updated, deleted,
or inserted by viewing them altogether. As a matter of fact, the APPORTIONMENT
block in Figure 4.5, consists of two blocks. In one block, the multi-records need to be seen
bringing the necessity of a single base-table for that block. On the other side, the second
block carries the crucial information for the user. Thus, the two blocks have to be on the

same page simultaneously.

4.2.8 Saving, Running, and Testing the Form The TWX application is a multi-
form environment. The first form, PASSWORD, is the entry form. This form has two
blocks. Until this form (thus any other form) is saved, the changes made remain in working
memory, but not in permanent storage. When the form is saved, all of the created form
definitions are permanently stored in a database. To run the form, these form definitions
must be converted into a file that can be run by SQL*Forms. This process is called

‘generating’ the form.

In order to save the file, the designer has to be in the IILE window. Ilere, he
can save the current form (SAVE). He can discard the changes made to the current form
(DISCARD). He can save a copy of the current form under an other name (SAVE AS).
e can rename it (RENAME) or he can permanently delete the form from the database

(DROP).

There are couple of points that can save the designer some minutes, or even hours.
SQL*Forms doesn’t let the designer go out of the form before he saves the changes he
made to the form. Sometimes, he does not even have to make any changes to the form.
SQL*Forms assumes that there has been a modification (when there is not) when the
MODIFY key is hit. This precaution leaves no doubt about securing the current form
against accidental mishaps. However, the designer might drop the current form acciden-
tallv. In this casc, hie can rename the form under a different name and later he can load

the original form back again, thus, saving the previons one.

If a block is accidentally dropped (the same as deleted), in the form level. the current

form can be discarded. What happens is the latest changes to that form are ignored. So,

4-12

the form can be reopened in the previous version of it.

After the form is created, the database tables can be viewed. All the columns in
the table can be accessed through the form. If one or more columns from a table are not

viewed by the form, then these can not be altered during the runtime.

4.2.4 Modifying the Form Through SQL*Forms, new fields can be created. These
new fields don’t necessarily have to belong to a table in the database. A drawn field can
be moved to any place on the screen together with all its rttributes. However, if a whole
block is being moved inside a form, or from one form to an other ¢ ~, then the block level
attributes are lost. Although every field in that block keeps its attributes and triggers,
block level ‘where, order-by’ clauses, block level triggers, multiple-record specifications turn

into default values.

If a block is going to be moved, this can be done in the “.INP’ file. But, the designer
must use caution when modifying this file. Since when the forms are loaded by their .INP
files, any minor change in the syntax can cause not to be able load the form both in the
design-time and in the runtime. In SQL*Forms, the debuyging tools do not work, if the

form can not be loaded. Lots of precious time can be wasted after modifying the .INP file.

Wahile in a block, the attributes of the field can be changed, modified, or redefined.
To set the attributes or to change them, while on a field, simply the DEFINE FIELD

window is chosen. In this window, the important attributes that could be set are:

o TRIGGER: Displays additional windows that are used to define triggers.

e ATTRIBUTES: Displays the SPECIFY ATTRIBUTES window. where the designe

determines various attributes of the current field.

o VALIDATION: Displays the SPECII'Y VALIDATION window, where the field length,

query length, and criteria that validate what the operator enters are explained.

o COLUMNS: Displays the LIST COLUMNS window, which shows the name of cach

column in the base table for the current block.

4-13

From the TWX application, many examples can be given for the above field at-

tributes.

In the PASSWORD block, after the user enters the seminar number, a post-field
trigger checks the user input and validates it. If the seminar number is not the same one
as the activated seminar number in the database, a message on the screen warns the user

and forces him to enter a valid one.

In the same block, the SIDE field which consists of only one character rejects two
digit insertions by validating the input. In this block, when the password is typed, it
can not be seen. This is done by setting the attribute echo to off in the ATTRIBUTE
WINDOW.

4.2.5 Triggers The application TWX is driven through SQL*Forms triggers. Trig-
gers are activations placed strategically throughout the form. When certain inputs or
events occur, trigger goes off. When this happens, the contents of the trigger-special
rules and instructions written by the designer-are executed. SQL*Forms offers a wide
range of built-in logic capability. With triggers, the designer can Jo even more. Triggers
give the designer the power to take the shell of a form and craft it into a sophisticated

application (12).

The capabilities of triggers and related examples from the application are listed

below.

o Triggers can validate data entry in several ways.

In the MISSION_INPUT block which is in the APPLICATION forin, the field mis-
ston.number has a trigger that validates the data. When the line number is entered,
this is compared to the one in the database. If this is not a valid line number then
the trigger goes off and forces the user either to enter a valid number or to exit the

application.

o Triggers can protect the database from operator errors, such as the entry of dnplicate

records or the deletion of vital records.

4-14

In PRIM_AC block (primary aircraft) which is in the APPLICATION form, there
are four triggers in the block level. One of them prevents the user from deleting the
primary aircraft entries while there are other aircraft entries from other kind, thus,

protecting the application from accidental or intentional data manipulation.
Triggers can limit operator access to specified forms.

While in the APPORTIONMENT form, after the user enters the percentages, the
entry-exit flag is set to one. So, when he tries to conie back to the APPORTION-

MENT form, he cannot enter the same form. He can only use this block once.
They can display rclated field data by performing table look-ups.

In the APPORTIONMENT form, there are two related blocks. One of them is the
SORTIES.AVAILABLE and the other one is the PRIMARY _AIRCRAFT blocks. In
the first one, the user can view the available data which shows the available aircraft
that can be assigned. By looking at these records, the user can assign the aircraft
in the PRIMARY_AIRCRAFT block. As a matter of fact, while the user assigns the

aircraft, the total nvmber decreases in the other block making immediate updates.
They can compare values between fields in the form.

in the APPORTIONMENT form and in the same-named block, the user first enters
the apportionments (percentages) for the aircraft before he begins the game. Later,
during the game, according to what he has played, he can compare the played-valnes

with the predicted numbers.

They can calculate field values and display the results of field calculations in different

fields.

It is quite casy to calculate the nummbers in rows and put the result in a field. If this
is going to be done for the columns in the runtime and dynamically, it will be quite

complicated to come up with the total. Yet, this was the case in this application.

In the APPORTIONMENT form, a summation of the numbers was necessary during
the runtime. Such that, when the user inputs four percentages the total should be

reflected on the screen iestantly and dynamically. This screen is shown in Fignre 4.5.

4-15

In ORACLE SQL*Forms, in order to calculate the total, a tutorial paper that was

specially prepared for this purpose became very useful. (9).

In this calculation, five different triggers were used. First, the old values and the
old sum were copied to an other field that wasn’t seen on the screen before coming
to the block. It was designed in such a way that while the user enters the different
percentages (in tens), the old value is erased and the new one is either subtracted or
added to the old sum depending on that the new value. So, the total is kept updated

every time a new value is entered.

As a rule in the application, the summation of these four values should add up to
one hundred, because these four numbers are percentages. Furthermore, an other
trigger doesn’t let the user go out of the block unless the summation is not equal to

one hundred.

Triggers can enforce block coordination during insert, update, delete, or query oper-

ations.

In SQL*Forms, via triggers, all the insert, update, delete, or query operations can
be fired and committed to the database. This can be done in the block or form level

depending on the trigger that is being used.

In the APPLICATION form, there is a screen where nine blocks are on the screen
altogether. This screen can be seen in Figure 4.6. Four of these blocks are for the
user to enter the values. After the user is done with entering to all of these fields,
he simply hits the commit key, and in the form level the commit-key trigger fires

and commits all the changes that are made. If there are no changes made, then the

trigger does not fire.

DAY. 0
CYCLE: DAY
SIDE. BLUE
MISSION LINE #: 1004
TARGET # 34
PRIMARY AIRCRAFT ATTACK SORTIES AVAILABLE
TYPE ROLE SORTIES TYPE ROLE SORTIES
e e ————— F4 A 12
- v e = ——— - F16 A 117
I NFs A 162
e mm e E——————— TOR A 352
ESCORT AJRCRAFT ESC SORTIES AVAILABLE
TYPE ROLE SORTIES TYPE ROLE SORTIES
- e mmmme—————— F4 A
. e m e e—— - Fi6 A 1
e m - mm———————— Fi5 D 2
DSUP AIRCRAFT DSUP SORTIES AVAILABLE
TYPE ROLE SORTIES TYPE ROLY SORTIES

2ATAF OFFENSIVE.COUNTER.AIR.MISSION.INPUT

Figure 4.6. A Multi-Block Screen (Page)

4-17

o ‘Triggers expand the functionality of [unction keys.

As stated earlier, onc of the trigger types is key-defined triggers. There are twenty

six key triggers in SQL*Forms. Some of them and their functions are as follows:

<KEY-CLRBLK> : clears the specified block

<KEY-CLRFRM> : clears the specified form

<KEY-CLRREC> : clears the record

<KEY-DELREC> : deletes the record

<KEY-EXEQRY> : executes a defined query

<KEY-EXIT> : exits the current block or the form and either goes to
the operating system prompt or to the form (or block)
it is called.

<KEY-PRVREC> : goes to the previous record

<KEY-NXTREC> : goes to the next record

Key triggers are most often used to disable keys or perform complex or multiple

functions with a single key strokes,

4.2.6 Validaling Data With SQL Statement With the additional SQL statements,

greater capabilities can be added to the application.

Validating data by displaying related data: In the logistic movement form (LOG_MOV),
some logistic movements are done by the user. He selects the airfields that the movem nt
is going to be done from and to. There is a post-change trigger in beth of these fields. In

this trigger, the following SQL statement takes place:

SELECT ’X’
FROM DUAL, BL_FIELD
WHERE :LOG_MOVE.FIELD1 = BL_FIELD.FIELD

This trigager forces the user to enter valid aitfields. In case of an invalid airfield
o

number, a failure message can be typed as well. Thus, warning the user about the mishap.

4-18

There is no such field, please reenter!

The DUAL table is an unconventional use of SQL. It is a device exploited by
SQL*Forms to do one thing-to set up a true or false test on field values (or system values,

such as the system date) in a form.

A trigger that uses the DUAL table isn’t interested in retrieving anything from the
database. The DUAL table trigger only wants to know whether the WHERLE CLAUSE in

the SQL statement is true of false; in other words, a ‘ves’ or ‘no’ answer.

Consider the LOG_MOVE trigger. If the statement in the WIHHERE clause happens
to be true, then the SELECT statemnent will fetch the value ‘X’ from a dummy table called

DUAL. If the statement is false, then the trigger fails without fetching the value ‘X

DUAL is an actual database table-the smallest conceivable table-supplied by OR-
ACLE. As shown below, DUAL is a one row, one column table that contains a single

constant value, ‘X’

V. Conclusions and Recommendations

5.1 Overview

This chapter gives a summary of the solution to the problem that I stated in the
introduction section and draws conclusions about it. Recommendations are presented for

further courses of actions of this study.

5.2 Summary of Research

The goal of this thasis effort was to substitute the ORACLE RDBMS for INGRES
RDBMS in this appiication, namely, the Theater War Ezercise. The relational data was
easily transferred. Then, the 4GL applications were built in ORACLE by using SQL*Forms
utility. There were four benefits from this effort. The first two of them were directly related
to the application and very necessary to draw conclusions about the results. The last two

were possible side benefits. These are:

1. Determine a baseline for 4GL comparison in general
2. Compare aud contrast the ORACLE and INGRES 4GLs

3. Development of a canonical set of 4GL functions that can be used to compare other

systems

4. Development of automated methods to transfer INGRES 4GL to ORACLE AGL
The work accomplished in this thesis effort may be su imarized as follows:

o A detailed explanation of the 4GLs inciuding answers to these questions:

— What are they?
- How were they evolved and why were theyv nee led?
— What can be done with thein and how can they be used in the database arena?

- YWhat are the differences between some of the 4GLs and what criteria are used

to bring the differences up?

o A detailed study of the ORACLE and INGRES 4GLs including the tools they use
to build applications

o A comparison between the two 4GLs

¢ Building the application in ORACLE by using SQL*Formns

5.3 Conclusions

There were two arecas in this effort when I undertook the study that were closely
reiated Lo each other. First, a deep understanding of the 4GLs was necessary through a
dense research. Then, the first theoetical knowledge should have been combined with the

practicality of the application creation.

When I accomplished these, I achieved the first two goals of the effort; compare and

contrast the two 4GLs and the building TWX application in ORACLE RDBMS.

Between the two 4GLs, ORACLE seemed easier for building either custom-made or
default forms and applications. Again ORACLE is superior by allowing the designer to
assign variables to databa.e tables by saving disk space. ORACLE is very fast in the new

system compared to INGRES in the old system.

Tlie application built by ORACLE’s SQL*Forms as far as its contents is very much

like its counterpart INGRES. More than half the application was redesigned successfully.

5.4 Recommendalions

Because of the time constraints during this study, I was more concerned about the
main goals. [certainly spent most of my time tackling the problems [encountered in the
course of this study. It was surprising for me to find some of the solutions to the problems

in the design issue at the very last moments.

The development of a canonical set of 4GL functions can bhe derived after closely

examining the application in the runtime and going thiough the source code i the mean
puing B

time. The source code can be parsed depending on the functionality. Then, discrete 4GL

functions can be derived. These functions may be used in the evaluation ol other 4GLs.

H-2

Any project whose goal is some kind of application design by using 4GLs may have side
benefits by exploring these 4GL functions. This kind of study leads to the understanding

of the real capabilities of the other 4GLs.

Because of ORACLE SQL*Forms’ almost totally automated design phase, there was
hardly any motivation to develop the automated methods to transfer INGRES 4GL to
ORACLE 4GL. Yet, this is a necessity and should be implemented in another study. Once
this process is automated, the transfer of the applications will be quicker. Although this
might seem quite accomplishable, the fact that the both 4GLs are running on different

systems make the job harder.

Although this thesis effort is quite successtul in many ways, the application creation
in ORACLE has not been finished yet. I strongly recommend it be completed in another

thesis effort to evaluate both systems in the best way possible.

6.

10.

11.
12.
13.
14.

15.

16.

Bibliography

. Martin Arben. Fourth Generation Languages. Prentice-Ilall, Englewool Cliffs, N.J.,

1986.

. Michael S. Brooks. Develop a new database and support software for the theater

war exercise. Master’s thesis, AFIT/GCS/ENG/87, School of Engineering, Air Force
Institute of Technology (AU), Wright Patterson AF'B, Oh, 1987.

. CompuServe Data Technologies. The 1990 Guide to High-Performance {GL/RDBMS

Applications, part 2 edition, 1990.

. Daniel J. Cronin. Mastering ORACLE. Hayden Books, 4300 West 62nd Street, Indi-

anapolis, IN 46268, 1989,

. Peter J. Gordon. A graphical player interface to the theater war exercise. Master’s

thesis, AFIT/GCS/ENG /89D-5, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright Patterson AFB, Oh, 1989.

W. Gregory ana W. Wojtkowski. Applications Software Programming with Fourth-
Generation Languages. Boyd & Fraser Publishing Company, Boston, 1990.

. Mark S. Kross. Developing new user interfaces for the theater war exercise. Mas-

ter’s thesis, AFIT/GCS/ENG/87-19, School of Engincering, Air Force Institute of
Technology (AU), Wright Patterson AFB, Oh, 1987.

. J. Martin. Application Development Without I rogrammers. Prentice-Hall, Englewool

Cliffs, N.J., 1982.
Keith Morrison. Totaling columns in sql*forms. Advanced InfoStructures, 1, 1989.

Oracle Corporation. Oracle Databasc Administrator Guide, 6.0 edition, Novem-
ber,1988.

Oracle Corporation. SQL Language Reference Manual, 6.0 edition, November, 1988,
Oracle Corporation. SQL*Forms Designers Reference, 6.0 cdition, November,1988.
Oracle Corporation. Oracle Call Interfaces (OCIs), 6.0 edition, September,1989.

Oracle Corporotion. Oracle RDIBMS Database Administrator’s Guide, 6.0 edition,
November,1983.

David Pepin. ORACLE Programmer’s Guide. QUL Corporation, 11711 N, COL-
LEGE Ave., Carmel, IN 46032, 1989.

Darrell A. Quick. Developing map-based graphics for the theater war exercise. Mas-
ter’s thesis, AFIT/GCS/ENG/R38D-16, School of Engincering, Air Force Institute of
Technology (AU}, Wright Patterson AFB, Oh, 1988,

. Relational Technologyv. 4G L Application Development Guide, 1987.
18.
19.

Relational Technology. Ingres ABEF/JGL, 6.0 edition, 1988.

Jonathan Sayles. SQIL Spoken Here. QED Information Sciences. Wellesley, Mess..
1989.

BIB-1

20. K. R. Wilcox. Extending the user interface for the theate: war exercise. Master’s
thesis, AFIT/GCS/ENG/88D-24, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright Patterson AFB, Oh, 1988.

BIB-2

Vita

First Lieutenant Adnan Altunisik was born on April 28, 1965, in Ankara, Turkey.
Upon graduation from Kuleli Military High School, he entered the Turkish Air Force
Academy in Istanbul, Turkey. In August 1987, he received his Bachelor of Science degree
in Electrical Enginecring as well as his commission as a Second Lieutenant in the Turkish
Air Force. Between September 1987 and May 1988, he attended the Turkish Air Force
Communications School in Izmir, Turkey. His first duty assignment in May 1988 was as
a Comununications Officer in the Air Force Training Headquarters in Izmir, Turkey. In
September 1988, he was assigned to the Air Force Techical Schools as the Commander of
Electronic Maintenance Unit. e entered the School of Engineering, Air Force Institute
of Technology in May 1989. After graduation in March (1991). First Lieutenant Altunisik

will be assigned to the Turkish Air Force Headquarters, Ankara, Turkey.

Permanent addre<s: Abdulhak Hamit Cad.
#851/A
Mamak, Ankara 06470
TURKEY

VITA-1

